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ABSTRACT 

The Marine Corps utilizes virtual simulations as a training tool for ground combat 

operations. Currently, the artificial intelligence of simulation entities does not exhibit 

appropriate performance degradation due to environmental conditions, such as heat and 

humidity. To address these gaps, this thesis reviews existing approaches to modeling the 

influence of environmental factors, specifically heat and humidity, on human 

performance in vigilance and attention tasks. We present a novel agent behavior model 

that incorporates a modified A* search pathfinding algorithm based on empirical 

evidence of human information processing under the specified environmental conditions. 

Next, an implementation of the agent behavior model is presented in a military-relevant 

virtual game environment. We then outline a quantitative approach to test the agent 

behavior model within the virtual environment. Results show that our human information 

processing–based agent behavior model demonstrates plausible agent performance 

degradation in hot, humid temperature environments when compared to paths around the 

danger area in mild temperature environments. The results of this research provide an 

approach for implementing an agent behavior model that accounts for environmental 

impacts on cognitive performance. We recommend future work to validate the model in a 

human subjects experiment to facilitate improving the realism of simulation training. 
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I. INTRODUCTION 

A. BACKGROUND 

The use of first-person shooter (FPS) simulations for training has become 

commonplace in the United States Marine Corps and United States Army. These training 

exercises can range from simple “terrain walks” to familiarize oneself with the 

operational environment to rehearsals via the simulation, and can provide valuable insight 

before execution (Lopez, 2014). However, in order to enhance the user experience and 

breed “buy in” to this training technique, the computer-generated forces (CGF) within the 

simulation must behave realistically.  

An important characteristic of simulation is that it allows for situations in which 

trainees can train and practice individual, team and leadership skills without the need for 

other live participants. For example, training scenarios developed for the FPS Virtual 

Battle Space 2 (VBS 2) simulation allowed maneuver squad leaders to practice their 

decision-making skills in a study conducted in Camp Lejeune, North Carolina (Carroll et 

al., 2015). Traditionally, this type of training would occur in a live environment on a 

large training range. Furthermore, it would require participation from an entire squad, and 

consist of a relatively small number of trials due to time and logistics constraints. While 

simulation advances have helped address many of these issues, limitations in training 

system availability can limit simulation-based training events to a unit’s key leadership. 

To this end, CGF powered by artificial intelligence (AI) may end up representing many 

of the subordinate members in a unit. Training with CGF powered by AI places an 

implicit necessity that these agents perform in a realistic manner that supports a high-

fidelity training experience. The “goal” of CGF “is to develop these representations to the 

point that they will act automatically and with some realism without human intervention” 

(Pew & Mavor, 1998, p. 38). An observation made in an Office of Naval Research 

(ONR) presentation on an AI virtual simulation training suite highlighted the need for 

realism, declaring that “unacceptable role player AI within existing simulations and game 

environments prevent widespread adoption” of those simulations for training use 

(Stensrud & Hamel, 2015, slide 2).  
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Many of the operating environments that the Marine Corps currently operates in 

have high levels of heat and humidity. This environmental reality can adversely affect the 

physical and cognitive performance of Marines who are required to operate in such 

conditions. Partially addressing these realities, important advances in the physical CGF 

models within FPS simulations have been made in recent years that account for certain 

physical performance decrements. Specifically, the U.S. Army’s Virtual Battle Space 3 

(VBS 3) simulation has made significant strides in the realism of the physical models 

utilized for FPS simulations (Lopez, 2014). VBS 3 allows Soldier avatars to model the 

physique and physical performance of the actual Soldier by accounting for the Soldier’s 

“height, weight, Army Physical Fitness Test scores and even their weapons qualifications 

scores” (Lopez, 2014, paragraph 2). These inputs create more realistic-looking avatars, 

and more importantly, generate decremented marksmanship performance and fatigue of 

the Soldier’s avatar based on the avatar’s physical actions in the simulation (Curthoys, 

2014). Furthermore, VBS 3 allows exercise designers to “manipulate different weather 

patterns” (“Army Gaming releases newest training product,” 2014, p. 2). The physical 

models within military simulations offer cutting-edge visualization of the military 

operating environment, but a gap exists in modeling the effects of the physical 

environment on the cognitive skills internal to each Marine or Soldier represented within 

the simulation. 

1. Research Questions 

The realism of a FPS military simulation can greatly improve if it can model the 

impacts of the environment on certain cognitive aspects of the CGF entities. This thesis 

addresses several key research questions with respect to improving the modeling of the 

environment within training simulations. First, to what extent are the environmental 

factors of heat and humidity accurately modeled in FPS and constructive military 

simulations? And if modeled correctly, do these environmental factors contribute to 

realistic performance of the AI, or behavior, of the simulated entities within the 

simulation? Next, to what extent can an investigation of human performance of tasks 

relevant to military operations, such as vigilance and attention, executed under various 
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environmental conditions be used to quantify and improve models used to create the AI 

of entities executing a similar task in a military training simulation? 

This thesis examines legacy and current military simulations with respect to the 

extent to which they model environmental impacts on cognitive processes. We will 

explore both FPS and constructive types of military simulations to gain a better 

understanding of ways in which environmental modeling techniques could improve the 

behavior in both types of simulations. For example, it is suggested that constructive 

simulations could use more realistic behavioral input (Blais, 2016). Wing (2002) pointed 

out that “we need to devise a means to inject human-behavior-representation-in-the-loop 

in constructive simulations” (p. 27). Aligned with this call to action, this thesis will first 

investigate current approaches to modeling pathfinding in CGF. Next, this thesis will 

analyze two key aspects of cognition, attention and vigilance, within a human 

information-processing model proposed by Wickens, Hollands, Banbury, and 

Parasuraman (2013). Attention and vigilance will be discussed within the broader context 

of multiple studies that analyzed the influence of heat and humidity on these 

psychological constructs. Finally, this thesis proposes a model of a CGF agent executing 

pathfinding in an improvised explosive device (IED) danger area environment. This 

model will demonstrate how simulation designers could modify a CGF agent’s AI to 

reflect cognitive decrement in vigilance and attention related tasks as a result of 

environmental heat and humidity. 

2. Performance Capabilities Needed for CGF  

CGF in military simulations must possess many qualities such as physical 

appearance and mental processes taking place within the CGF’s “mind.” The efforts of 

the Panel on Modeling Human Behavior and Decision Making: Representations for 

Military Simulations provide an extensive description of human behavior modeling, with 

specific focus on several cognitive properties and constructs that the panel felt would lead 

to increased realism of military simulation (Pew & Mavor, 1998). It should be noted that 

the authors mention the military user audience as a key constituent that must be able to 

trust the validity of the models they use. Furthermore, their report provides an argument 
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for grounding human performance models in the results of experimental data, and for 

how these data can range from operational performance data to inherent human 

behavioral characteristics. Pew and Mavor’s (1998) contribution offers a broad span of 

potentially important cognitive factors and constructs for inclusion within human 

performance models, such as situational awareness1 and individual decision-making 

within the realm of command and control. Although these topics fall outside of the scope 

of this thesis, they are worth mentioning given the fact that the authors make several 

recommendations for modeling these human qualities via decremented functioning of 

attention or human information processing. We will similarly influence attention and 

human information processing within this thesis. 

Ultimately, this thesis aims to offer an approach that will enable increased fidelity 

of military simulations, as well as work towards achieving the goals of Schroth (1989) 

who emphasized the need to include representation of human factors in combat models. 

In his work, Schroth suggests sensitivity analyses be used to assess the influence that 

human factors can have on combat models, and provides a framework to use artificial 

intelligence for the purposes of achieving this goal. 

a. Attention 

In their work, Pew and Mavor (1998) included tactical vignettes of military 

personnel in mission scenarios in order to provide a tangible way of grasping the detail 

inherently needed in simulation human behavior models. At the time of their publication, 

the authors identified a general dissatisfaction with the realism of human behavior offered 

in military simulation. More importantly, the authors emphasize that cognitive properties 

and constructs exist, attention for example, that can help create more realistic human 

models. Furthermore, the authors suggest that training system developers should adopt a 

core notion that “movement from the current state of human behavior representation to 

the achievement of higher levels of realism with respect to observable outcomes requires 

significant understanding and application of psychological and organizational science” 

                                                 
1 For a detailed description and discussion of situational awareness, see Endsley (1995).  
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(p. 14). The inclusion of attention as a valuable CGF property to model aligns with the 

quest to improve CGF human behaviors, and serves as validation for studying how to 

better model attention within CGF entities. Notably, the authors point out that “divided 

attention and multitasking—doing several things at once—are ubiquitous in combat 

operations” (p. 112).  

b. Behavior Moderators 

Mental and physical “behavior moderators,” such as environmental heat, 

comprise one of many “external moderators” of human performance recognized as 

important factors for realistic CGF (Pew & Mavor, 1998, p. 245). In their work, Pew and 

Mavor (1998) attribute Van Nostrand (1986) with leading efforts to review and 

encompass numerous moderators of human performance into combat models. The 

authors also commend Van Nostrand for seeing the value of empirical data for modeling 

Soldiers operating on the battlefield in stressful circumstances. Van Nostrand’s (1986) 

work is foundational because it calls for the inclusion of actual empirical data derived 

purposefully for use in combat models instead of repurposing data from other uses or 

studies. This idea finds traction in a scenario envisioned by NATO where military units 

in the year 2020 will train with repositories of human behavior data that provide the 

ability to combine and utilize “models such as thermal physiological response to working 

in hot environments coupled with vigilance and decision making models that are 

moderated by body temperature and hydration status” (North Atlantic Treaty 

Organization (NATO), 2009, p. 1–8). Notably, Pew and Mavor (1998) point out that data 

collection of varying human performance proves anything but easy as a result of the 

various conditions exhibited by operational environments and missions. 

Another key takeaway from Van Nostrand (1986) and reinforced by Pew and 

Mavor (1998) includes the observation that multiple characteristics of human combat 

performance fall under the influence of a multitude of moderators (including heat and 

humidity); thus, one must realize that no combat model will prove complete, but value 

can still come from having human performance modeled and negatively influenced in 

some way. Van Nostrand uses a specific example of how to model heat’s effect on a tank 
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crew, describing possibilities of accounting for individual variance in performance, as 

well as changing the rate of declining performance for the crew members. 

Pew and Mavor (1998) make note of a quote from Van Nostrand’s (1986) work 

commenting on previous Chemical, Biological, Radiological, and Nuclear (CBRN) 

performance studies. Van Nostrand’s observation proves at least tangentially related to 

heat’s impact on the performance of military personnel: 

Apparently the major problems are the heat buildup inside the clothing (in 
which case performance decrements associated with high temperatures 
should be expected), the inability to perform work requiring manual 
dexterity with the heavy gloves on, and to see well with the face mask in 
position. The end result of prolonged exposure to heat is extreme fatigue, 
and the result of fatigue is degradation of thinking and decisionmaking 
(sic) skills. Therefore, the tests that require soldiers to perform tasks that 
are so well practiced that they can do them without thinking about them 
will show less decrement than tasks which require the soldiers to decide 
what must be done next. Any task which requires vigilance will probably 
show large performance decrements. (Van Nostrand, 1986, pp. 2–10)  

Fatigue as an aspect of declining human performance in combat falls outside of the scope 

of this thesis, but Van Nostrand’s connection of heat exposure to decision-making issues 

and vigilance is an important concept for our proposed model. 

c. Human Data in Simulations 

The U.S. Army has conducted extensive research into the performance 

capabilities and characteristics required of human performance models within military 

simulations. An example of this research entails an effort to build a human performance 

repository known as the Distributed Soldier Representation (DSR) designed to serve as a 

mechanism for implementing realistic performance data within simulated CGF 

(Fefferman et al., 2015). One of the categories of performance data specifically outlined 

within the DSR report centers around the effects of stress on performance (Fefferman et 

al., 2015). In 2012, the U.S. Army Health Promotion and Wellness website article titled 
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“A Soldier’s Guide to Deployment Related Stress Problems,” linked stress from combat2 

as manifesting itself in varying forms to include physically quantifiable results such as 

“fatigue, slower reaction times, indecision, disconnection from one’s surroundings, and 

inability to prioritize” (as cited in Fefferman et al., 2015, p. 14). 

Fefferman et al. (2015) utilize Marine Corps Reference Publication (MCRP) 6–

11C Combat Stress (2000) to link heat stress to training and combat. MCRP 6–11C 

(2000) points out that combat can result in “exposure to heat, cold or wetness” for ground 

combatants (p. 2). The MCRP also points out that “environmental stressors often play an 

important part in causing…adverse or disruptive combat stress reaction behaviors” (p. 2). 

Fefferman et al. (2015) mention the Department of Defense (DOD) simulations One 

Semi-Automated Forces (OneSAF), Infantry Warrior Simulation (IWARS), and VBS 2 

as simulations where one could model combat stress within entities. The authors also 

offer several ways to mimic the effects of combat stress within a simulated Soldier entity. 

A few proposed examples for simulating combat stress within Soldier entities derived 

from a guide titled “Leaders Guide for Managing Marines in Distress” include longer 

(i.e., slower) reaction times, and an “inability to perceive (cannot see/hear)” (as cited in 

Fefferman et al., 2015, p. 98). The DSR report implies a need for modeling of 

environmental factors such as heat in yielding combat stress reactions (along with many 

other sources of stress), and specifically identifies a need for modeling indicators of 

combat stress reactions (CSR) within military simulation entities (Fefferman et al., 2015). 

Fefferman et al. (2015) point to the work of Steadman (2011) to link stress and 

attention. Steadman suggests that “stress degrades the form of conscious attention known 

as ‘working memory’” (Steadman, 2011, Abstract). Fefferman et al. (2015) created an 

implementation of their ideas by combining an application known as Effects of Stress 

(EoS) as a basis for a DSR server that would allow a simulation to “degrade the 

respective Soldier’s performance” in something “such as…small-arms fire accuracy” 

                                                 
2 The DSR report covers stress under the more general heading of Combat Stress Reactions (CSR) 
described in a U.S. Army Medical Department report called Combat Stress as “expected and predictable 
emotional, intellectual, physical and behavioral reaction from exposure to stressful events” (as cited in 
Fefferman et al., 2015, p. 90).  
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based upon the Soldier’s “unique, dynamic overall stress level” (p. viii). Ultimately, 

Fefferman et al. (2015) identify a modeling gap for having “CSR symptoms…instantiated 

within individual entities” (p. 97). 

Fefferman et al. (2015) also point to the work of Steadman (2011) for describing 

why physiology receives focus in their report. Steadman (2011) describes how 

“physiological response to combat can degrade…cognitive capability” for leaders 

“during stressful situations” (Steadman, 2011, Abstract). Furthermore, Fefferman et al. 

(2015) classify environmental heat and humidity primarily in the physiological domain. 

The authors make a case for including physiology in simulations to improve realism, 

identifying a common simulation weakness that “simulated Soldiers in current large-scale 

simulations never become fatigued” (p. 51). These researchers also combined the DSR 

server and the Army Research Lab Soldier Load Augmented Training Environment 

(SLATE)—a teaching tool for Soldiers to learn how to properly load out their carried 

equipment. The broader project that SLATE aggregates to, the Dismounted Solder 

Centric Load and Route Planning Mobile Training Applications, incorporates 

physiological heat strain and “energy expenditure models,” as well as “route analysis” 

(Fefferman et al., 2015, p. 50). 

Santee, Reardon, and Pandolf (2012) provide an extensive description of some of 

the physiologically focused biomedical models developed by the U.S. Army Research 

Institute of Environmental Medicine (USARIEM), and how laboratory study generated 

empirical data plays a crucial role in USARIEM modeling research. The authors also 

describe the physiological nature of inputs and outputs of the USARIEM heat strain 

model.3 Pandolf, Stroschein, Drolet, Gonzalez, and Sawka (1985) have created a version 

of the USARIEM model that considers “ambient air temperature… and relative 

humidity” (p. 13) as two possible inputs, along with “deep body…temperature and sweat 

loss” (p. 2). This model produces “predicted” outputs that include the “expected physical 

work-rest cycle, the maximum single physical work time…and the associated water 

                                                 
3 Santee et al. (2012) reported that the heat strain model has taken many forms, and they provide a history 
and overview of the model.  
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requirements” (p. 2). The authors provide a description of the underlying models and 

equations within their implementation of the USARIEM heat strain model. One of these 

underlying equations created by Pandolf, Givoni, and Goldman (1977) focuses on 

standing and walking, and resulted from a study that found how “energy expenditure 

increased with external load, both standing and walking” (Abstract). Ultimately, Santee et 

al. (2012) provide additional support to the DSR effort by arguing that “physiologically 

sound models can also be used in simulations that help to develop video games used as 

training tools” for military leadership (p. 40). 

In sum, this thesis aims to model CGF behavior modifications by accounting for 

environmental heat stress’ effects on vigilance and attention. Ultimately, the resultant 

effects on entity decision-making in choosing a route around potential IED danger areas 

will be demonstrated by linking human performance data with human behavior model 

performance to cause performance changes as proposed by Fefferman et al. (2015). 

B. CURRENT STATE OF CGF AND INTELLIGENT AGENTS  

Simulation for training and analysis encompasses a broad range of tools and 

techniques for implementing human behaviors within CGF. An analysis of current and 

former constructive and FPS4 simulations and their implementation methods of CGF 

human behaviors in the presence of environmental factors follows. 

1. Virtual Battle Space Human Behavior Modeling Approaches 

Both VBS versions 2 and 3 exist as a part of the United States Marine Corps’ 

Deployable Virtual Training Environment (DVTE)—a set of systems that incorporates 

multiple training simulations for the purpose of training and sustaining “individual, team, 

and unit critical war fighting cognitive skills” for “combined arms, squad, and platoon 

level tactics” (Program Manager Training Systems, 2016, p. 19). An early version of the 

DVTE’s use of VBS (called the Virtual Battlefield Simulation at the time) was in the Fire 

Team Cognitive Skills Trainer (FTCST) that promoted CGF manipulation by the Marine 

                                                 
4 Pew and Mavor (1998) call these “virtual simulations” (p. 34). 
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trainees (Bailey, 2002). An important characteristic offered by VBS’s environment is the 

capability for an instructor/operator to modify the weather and how constructive CGF 

behave (Program Manager Training Systems, 2016). The following section provides an 

assessment of the capability and performance of friendly CGF in VBS 3. 

a. Virtual Battle Space 3 Experimentation 

A summary investigation into VBS 3’s modeling and CGF AI capabilities showed 

it is not possible to manipulate the temperature of the game environment, although, 

weather effects such as fog, rain, and snow can be implemented (Bohemia Interactive 

Simulations, 2015). The VBS 3 manual reports the AI of the agents within VBS 3 can be 

influenced as far as behavior in terms of combat posture, ranging from “careless” to a 

more stringent “combat” mode of behavior that changes while accounting for tactical 

considerations such as cover locations, or alters behavior based upon enemy presence. 

Further, the agent’s pathfinding has the ability to account for enemy threats (Bohemia 

Interactive Simulations, 2015). 

VBS 3 has extensive modeling capabilities that influence the CGF’s fatigue and 

morale, and how those factors influence the CGF’s performance—for example, the VBS 

3 manual reports that morale and fatigue serve to cause “‘tunnel vision’ and decreased 

accuracy” (Bohemia Interactive Simulations, 2015). Currently, VBS 3 implements 

adjusted versions of Pandolf running and walking equations for fatigue modeling 

(Wojtowicz, 2013).5 The manual also reports that one can also edit a CGF unit’s level of 

training and endurance—both of which also effect the modeling of CGF fatigue and 

morale. VBS 3 also allows scenario editors to modify a unit’s navigation capability, and 

adjust it to induce errors that impact the unit’s arrival at the correct location of a waypoint 

(Bohemia Interactive Simulations, 2015). 

                                                 
5 See Wojtowicz (2013) for their explanation of these equations.  
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b. Virtual Battle Space 2 and CoJACK Human Behavior Construct 

Evertsz, Pedrotti, Busetta, Acar, and Ritter (2009) created a simulation scenario 

within VBS 2 that included a cognitive architecture called CoJACK to drive the AI of a 

suicide bomber and civilian populace agents. Evertsz, Ritter, Busetta, and Pedrotti (2008) 

describe CoJACK as a type of cognitive architecture known as a Belief, Desire, Intention 

(BDI) architecture, and cognitive architectures as generally “a computational system that 

models the structural properties of the human cognitive system—the information 

processing mechanisms that are fixed across tasks” (p. 2). CoJACK was designed for the 

purposes of modeling variability between individuals as a result of their cognitive, 

perceptual, physiological, and motor skill differences combined with the effects of 

behavior moderators resulting from external, internal, and task-caused conditions (Ritter 

& Norling, 2006). 

The linking of CoJACK into the AI of VBS 2 came from the need to upgrade the 

realism of CGF behavior beyond just path finding and script execution (Evertsz et al., 

2009). The authors note some of the useful aspects of pathfinding consist of its ability to 

communicate to users a CGF’s behavioral variability, as well as a means for allowing 

“intelligence to play out…and an area for affect to influence” (Evertsz et al., 2009, p. 7). 

The authors also offer tips on how to best mesh and de-conflict pathfinding issues that 

arose between VBS 2’s AI functionality and CoJACK’s implementation.  

Evertsz et al. (2009) aimed to delineate VBS 2 and CoJACK based on a 

separation where CoJACK would handle the internal aspects of an agent—including 

physiology—while VBS 2 would serve as the “mediator of perception, action, and 

environmental influences such as terrain and temperature” (p. 1). Unfortunately, the 

authors did not report the extent to which VBS 2 effectively models temperature. Evertsz 

et al. (2009) achieved integration of the cognitive architecture and simulation by porting 

CoJACK into VBS 2 via the simulation’s Application Scripting Interface (ASI)—

essentially a translation mechanism for outside AI to communicate and modify the 

behaviors that take place within VBS 2. 
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Evertsz et al. (2009) do discuss endurance and fatigue as possible VBS 2 CGF 

parameters that could be modified by external AI. The focus in their iteration of CoJACK 

and VBS 2 integration relied on having fear and morale serve as the main behavior 

moderators. These authors use the ASI and inherent VBS 2 parameters as a mechanism 

for altering the performance of the CGF within VBS 2. Further, the CoJACK architecture 

supplies an additional source of variability by providing unique cognitive performance 

abilities for each CGF, i.e., not all CoJACK-sponsored CGF will have the same ability to 

process information (Evertsz et al., 2008; Evertsz et al., 2009). Evertsz et al. (2009) 

describe a number of AI and scripting issues they had to overcome in order to de-conflict 

AI architectures and built-in functionality between CoJACK and VBS 2 capable of 

achieving the desired behaviors. Ultimately, this implementation example showcases an 

advanced mechanism for CGF AI. 

2. Discrete Event and Constructive Simulation Human Behavior 
Modeling Approaches 

 The DOD utilizes other simulation types beyond FPS-style simulations for 

achieving training or analysis objectives, including discrete event simulations and 

constructive simulations. The following simulations are relevant to a discussion of the 

implementation of human behavior models in CGF. We also pay specific attention to how 

they model the environment and its relational impact on CGF cognitive performance. 

a. Improved Performance Research Integration Tool (IMPRINT) 

The U.S. Army’s Improved Performance Research Integration Tool (IMPRINT) 

constitutes an important model for discussing human performance models that have 

mechanisms for implementing performance decrement due to various environmental 

characteristics (United States Army Research Laboratory, n.d.). IMPRINT is a discrete 

event simulation, and provides a key usage capability for determining how well system 

operators can interact with a system even while performing under the influence of 

“environmental stressors” (United States Army Research Laboratory, n.d., paragraph 2). 

The mechanism for modeling these environmental stressors entail “embedded 

algorithms” (United States Army Research Laboratory, n.d., paragraph 6). The structure 
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of IMPRINT consists of a “human-system task network modeling tool” (Allender, 2000, 

p. 140).   

Allender (2000) describes the IMPRINT model as a human performance model 

used primarily in the U.S. Army’s acquisitions process to promote the best possible 

design of a system. The author also describes IMPRINT as a means to improve a 

system’s performance and serve as a cost-mitigation technique within the overall 

acquisitions process (i.e., in the long run it proves cheaper to model humans via a 

computer than live in the field). As a relevant example of IMPRINT’s uses, Allender 

(2000) describes work accomplished by Perry, Davis, and Fields where IMPRINT 

supplied inputs to a constructive analysis model called the Combined Analysis and 

Support Task Force Evaluation Model (CASTFOREM) to “help predict high-level force-

on-force effectiveness” (as cited in Allender, 2000, p. 143). 

We refer the reader to the Chapter VI supplemental to gain a better understanding 

of the functionality and execution of the model within IMPRINT, as it inspires certain 

features within our model. 

b. Agent Cognitive Architectures and Performance Shaping Functions 

Numerous sophisticated approaches exist to model varying human performance 

within CGF that span a range of complexity. For example, Gillis and Hursh (1999) offer 

a complex implementation of a model that varies human performance as a result of 

combining factors of generic battlefield stress and fatigue, along with more interesting 

factors such as intelligence, level of experience, and type of personality for modeling a 

commander’s decision-making in a simulated National Training Center battle based on 

real data. We now provide a brief overview of more sophisticated approaches, such as 

cognitive architectures, cognitive-affective architectures and performance shaping 

functions, to modeling human behavior in the realm of human information processing 

(Zacharias, MacMillan, & Van Hemel, 2008).6  

                                                 
6 Zacharias, MacMillan, and Van Hemel (2008) offer a thorough summary of these types of modeling 
approaches.  



 

 14

(1) Cognitive Architecture Modeling Possibilities 

Ritter and Avraamides (2000) provide a relevant foundation for this thesis with 

respect to thinking about how to implement human performance moderators within 

models. The authors, referencing Boff and Lincoln, point out that “temperature” and 

“humidity…all influence attention and problem solving” (as cited in Ritter and 

Avraamides, 2000, p. 4). Building on this observation, the authors point out a weakness 

in simulated virtual environments in that they model “change in the physical 

environment,” but do not model how these changes affect agents operating within the 

environment (p. 4).  

Ritter and Avraamides (2000) classify behavior moderators as extrinsic, intrinsic, 

and task based, and place them within a stage model of human information processing 

that appears quite similar to the one put forth by Wickens et al. (2013). The authors 

propose meshing their architectural model construct with a simulation such as ModSAF 

via an external architecture such as Soar, Atomic Components of Thought-Rational 

(ACT-R), or Jack (a precursor to CoJACK). An important aspect of the architectural 

model proposed by Ritter and Avraamides (2000) would include multi-tasking, since 

multi-tasking ensures that “attention and task switching” get “exercised” (p. 21). 

An important contribution of the work by Ritter and Avraamides (2000) comes 

from their enumeration of the many behavior moderators required, and how these 

moderators could impact agent performance. The authors even provide use cases with 

operational examples. For example, the authors state that “temperature and exposure 

time” will have an effect on vigilance and hinder the ability to make faster decisions, 

resulting in an implementation where “a team that is exposed to excessive heat for a long 

period of time will not respond as fast to sudden threat such as an ambush” (p. 11). The 

authors also link the moderator of humidity to fatigue, and describe how the accumulated 

effects of exposure to elevated temperatures can cause fatigue. Furthermore, Ritter and 

Avraamides (2000) detail how agents experiencing fatigue could “choose low effort/low 

probability of success strategies over high effort/high probability options” (p. 19). This 

thesis has chosen to focus on heat’s relationship to an agent’s performance in vigilance 

and attention-type tasks, but Ritter and Avraamides’ (2000) linking of these 
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environmental characteristics to fatigue showcases the multitude of human performance 

characteristics that one could model.  

Ritter and Avraamides (2000) also include a section discussing how to manipulate 

perception (classified as internal moderators) within agents. They offer an example where 

an agent’s “perceptual accuracy” being affected could cause the agent to “spend more 

time…on searching for targets” (p. 12). Furthermore, an agent’s perception of threats to 

itself could be influenced whereby they will direct their attention more to enemy-

detecting sensors that indicate a pending attack (Ritter & Avraamides, 2000). The authors 

even describe how novices can be depicted in simulation by displaying them as 

possessing “slower processing speed, slower movement speed” and in making “more 

errors” (p. 8). 

Applying Ritter and Avraamides’ (2000) own logic of the interactive nature of 

behavior moderators, the properties of perception could also be negatively influenced by 

a number of factors, including temperature, resulting in agents not necessarily paying 

appropriate attention to searching for targets or recognizing IED danger areas. While, the 

recognition that simulation realism could increase by modeling stress increasing as a 

result of modeling “weather conditions” at the individual agent-level has existed in the 

literature (Ritter et al., 2003, p. 56), the capability has been virtually nonexistent. Another 

classification of internal moderator, called “action,” could show effects with respect to 

the accuracy or inaccuracy of an agent’s movement as a result of interacting with 

attention and other moderators relating to “task, anxiety” and “fear” (Ritter & 

Avraamides, 2000, p. 14). The authors include figures that visually depict the relationship 

between moderators and an agent’s performance (see Figure 1 and Figure 2). 
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 Model of Temperature and Exposure Time Moderators. 
Source: Ritter and Avraamides (2000). 

 

 Model of Humidity, Heat, and Fatigue Moderators.  
Source: Ritter and Avraamides (2000). 

(2) Performance Shaping Functions (PSFs) 

Paulsen, Alicia, and Shrader (2012) describe an effort to quantify environmental 

stressors via algorithms known as performance shaping functions (PSFs) for integration 

into modeling systems such as IMPRINT. An important aspect of this project focuses on 

the methodology to incorporate data from the literature and experimental efforts into the 

creation of the PSFs, and then to validate the outputs of the PSF-supported models 

against “human in the loop” data acquired via experimentation (p. 976). The project 

focused on motion as a stressor within a broader model of U.S. Navy shipboard tasks, but 

did focus heavily on “thermal stress” during their data acquisition phase (p. 977). In 
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general, the motivations of the authors centered on providing a more general ability to 

incorporate multiple environmental stressors that possess adequate “predictiveness” into 

models (p. 979). 

We also reviewed the PMFserv architecture, which potentially serves as a means 

to counter trends observed by the authors where agents possess super-AI “capabilities 

that no real human being would possess,” unencumbered by the “effects of fatigue, stress, 

heat…or other factors that would likely affect the performance of a real human operator” 

(Silverman, Johns, Cornwell, & O’Brien, 2006, p. 3). PMFserv is described as a human 

behavior architecture consisting of performance moderator functions (PMFs) that are 

essentially different “theories and models” describing human behavior (Silverman et al., 

2006, Abstract). PMFserv consists of multiple modules within an agent’s representation 

of itself including modules for perception and “biology/stress,” along with other modules 

to represent other elements of human behavior such as a “personality, culture, emotion” 

module (Silverman et al., 2006, p. 7). An interesting quality of Silverman et al.’s (2006) 

work entails the inclusion of other models as PMFs within PMFserv, such as their own 

version of the Gillis-Hursh (1999) model and inclusion within the bounds of that model 

of “reservoir tanks” to represent sources of fatigue (p. 10). The authors give a list of the 

numerous efforts to utilize PMFserv mostly in simulations of crowd behavior, including 

their own implementation to simulate “crowd and militia behaviors observed in the 

Ranger operation in Mogadishu” by integrating PMFserv with Unreal Tournament 

(Silverman, Johns, et al., 2006, p. 26).7 

(3) Cognitive Architecture Modeling- SOAR and ACT-R 

Soar (Laird, Newell, & Rosenbloom, 1987) and ACT-R (Anderson & Lebiere, 

1998) comprise two other types of cognitive architectures that have found use in driving 

human behavior models within CGF. Pew and Mavor (1998), referencing Newell, 

describe Soar as a “symbolic cognitive architecture that implements goal-oriented 

behavior as a search through a problem space and learns the results of its problem 

                                                 
7 See Silverman, Bharathy, O’Brien, and Cornwell (2006) to learn about this PMFServ integration with 
Unreal Tournament in more detail. 
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solving” (as cited in Pew & Mavor, 1998, p. 90). Since being introduced, Soar has found 

practical application in the real world, and in human behavior cognition modeling (Pew 

& Mavor, 1998). Kelley, Patton, and Allender (2001) describes ACT-R as a “symbolic, 

production system architecture, capable of low-level representations of memory 

structures” (p. 1455). A project describing the linkage of ACT-R and Unreal Tournament 

describes ACT-R as a “high-fidelity architecture” capable of providing models of the 

simplest of human cognitive behaviors to more involved tasks such as “high-level 

decision-making” (Best, Lebiere, & Scarpinatto, 2002, p. 34).  

Multiple use cases of ACT-R and Soar demonstrate its relevance to modeling the 

environment within simulation. One such use case connected a version of ACT-R, known 

as ACT-RΦ, with a simulation called HumMod (Dancy, 2013; Dancy, Ritter, & Berry, 

2012). HumMod, the work of Hester et al., can be described as a human physiology 

simulation that can model heat within humans (as cited in Dancy, 2013). Dancy, Ritter, 

and Berry’s (2012) goal for this capability entailed providing a means for linking 

“environmental…effects on central and peripheral physiology” to show how these would 

influence parameters representing cognition (p. 81).  

Allender, Kelley, Lockett, and Archer (2005) describe the applicability and 

flexibility of the IMPRINT model in integrating with other types of models and 

simulations, such as ACT-R. The authors describe the significance of this integration as 

allowing for much of the human performance data that drives IMPRINT to come from 

the ACT-R model rather than from consultations with subject matter experts, literature 

reviews, or field tests. Allender et al. (2005) describe how the U.S. Army integrated 

ACT-R with its modeling efforts of Soldier situational awareness—describing the work 

of Kelley, Patton, and Allender (2001), who “used it to predict the errors in situation 

awareness of infantry soldiers while navigating cross-country on foot” (p. 1194). 

Allender et al. (2005) discuss Pew and Mavor’s (1998) work as a driver of 

integrating models with cognitive models such as ACT-R. The authors envisioned models 

such as IMPRINT inheriting a mechanism for modeling “attention, memory, and detailed 

cognitive processing” (Allender et al., 2005, p. 1193). Allender et al.’s (2005) use of a 

few examples relating to situational awareness leads us to believe that they likely refer to 
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attention as pertaining to situational awareness as described by Endsley (1995), however, 

we would like to note that attention does not rely on situational awareness to exist as a 

cognitive property. 

Wray, Laird, Nuxoll, and Jones (2002) outline their plans and previous work for 

applications of Soar to the FPS game platform Unreal Tournament as a part of an Office 

of Naval Research (ONR) program. Their work provides an intriguing implementation of 

environmental influence on CGF. An example of Soar integration with Unreal 

Tournament in a game called Haunt 2, links environmental temperature to fatigue, 

exertion, and body temperature level of the CGF (Laird et al., 2002). The authors 

describe how a decline in temperature has a direct influence in causing the CGF to 

become more fatigued. Wray, et al. (2002) make note that they remain undecided on 

which environmental influences seen in Haunt 2 that they may use within the ONR 

project’s CGF, but that the mechanisms for doing so remain in place due to the value 

added in terms of more realistic and variable behavior. 

(4) Other Cognitive Architectures 

Ubink, Aldershoff, Lotens, and Woering (2008) describe work accomplished in 

the Netherlands called the Capability-based Human-performance Architecture for 

Operational Simulation (CHAOS) that serves as the underlying cognitive architecture for 

the Soldier Capability Optimization for Projected Efficacy (SCOPE) infantry analysis 

model. The CHAOS architecture follows a model of pandemonium theory—essentially 

different human behaviors engage in a competition for human performance 

characteristics (called resources)—where only a certain amount of these resources are 

available (Ubink et al., 2008). Attention serves as one of the human performance 

resources that the behaviors could compete over, and stress plays a role in potentially 

impacting these resources (Ubink et al., 2008). 

Ubink et al. (2008) also describe an implementation of CHAOS where the Dutch 

and Afghanistan weather climates influenced the performance of agents within SCOPE 

executing a peacekeeping operation. The authors describe how the agents took longer to 

finish the operation in the hotter climate. SCOPE and CHAOS incorporate several 
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models to account for the carried load of Soldiers and acclimatization’s role in varying 

performance in the heat (Ubink et al., 2008; Ubink, Lotens, & Aldershoff, 2008). The 

model also implements fairly detailed physiology models that account for environmental 

climate metrics, such as temperature and humidity, although admittedly SCOPE remains 

limited because of its inability to model visual perception, or to link vision to the 

resources up for competition (Ubink et al., 2008; Ubink, Lotens, & Aldershoff, 2008). 

SCOPE also models threat perception as a part of a situational awareness model (Ubink 

et al., 2008). The CHAOS implementation described by Ubink et al. (2008) illustrates 

this threat perception behavior. Ultimately, the contribution of CHAOS is an example of 

a general framework capable of allowing environmental stressors to influence cognitive 

performance in a human characteristic such as attention and overall threat perception 

(Ubink et al., 2008). 

c. Semi-Automated Forces  

Constructive simulations often make use of semi-automated forces (SAF), 

described by Pew and Mavor (1998) as “virtual simulations of multiple objects that are 

under the supervisory control of a single operator” (p. 40). A few key military 

simulations employing SAF include ModSAF and OneSAF. Pew and Mavor (1998) 

describe a ModSAF derivative in a project from the 1990s known as Marine Corps 

Synthetic Forces (MCSF). The authors, referencing Hoff, describe MCSF as a simulation 

that delivered CGF models for Marines at the squad level and below for the “purposes of 

training their respective superiors” (as cited in Pew & Mavor, 1998, p. 41). SAF 

decisions within MCSF are made based upon choosing from tables of ranked decisions 

for a given situation and simulation state (Pew & Mavor, 1998). However, MCSF did not 

try to implement higher-level cognitive abilities within CGF agents, including 

“information gathering, perception, correlation, or situation assessment” (p. 41). 

Pew and Mavor (1998) describe ModSAF as fairly primitive with respect to 

human behavior modeling. Downes-Martin enumerate only a few basic behaviors for 

ModSAF such as “move, shoot, sense, communicate, tactics, and situation awareness” (as 

cited in Pew & Mavor, 1998, p. 40). In fact, Pew and Mavor (1998) argue, “It is 
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impractical to use ModSAF to construct general-purpose behavioral or learning models,” 

because “no underlying model of human behavior” exists (p. 40). This results in “any 

behavior representation” needing to “be coded into the finite-state machine” of ModSAF 

(p. 40). Furthermore, the authors relate that a burdensome human-in-the-loop requirement 

exists for controlling ModSAF agents. One of the main reasons for SAF control and 

intervention by humans stems from a need to correct realism deficiencies in the CGF for 

the purposes of better training (Abdellaoui, Taylor, & Parkinson, 2009). Reece, Kraus, 

and Dumanoir (2000) describe more advanced path finding implementations within 

ModSAF in order to create tactical path finding and movement of infantry CGF agents. 

Interestingly, these authors chose a movement technique called “cell decomposition;” this 

technique is akin to grid search representations that use A* path finding algorithms 

(Reece, Kraus, & Dumanoir, 2000, p. 5). Another more advanced implementation of 

ModSAF includes instances of using Micro Saint models (a tool utilized within 

IMPRINT) to generate human performance data describing declining performance in 

terms of both timing and accuracy of task completion that were then fed into ModSAF 

simulations (Pew & Mavor, 1998). 

OneSAF is an entity-level simulation capable of providing CGF within 

constructive simulations or virtual training simulations utilized by the U.S. Army and 

U.S. Marine Corps (G-3 Operations and Training, n.d.; PEOStri, n.d.). OneSAF employs 

a weather modeling capability that can model temperature and relative humidity (Pfeiffer 

& Tamash, 2014). These authors describe an experiment with OneSAF that demonstrated 

significant improvements to simulation realism with respect to ground convoy and air 

operations of a heavy March 2003 dust storm during the Second Gulf War in Iraq. The 

improved realism was manifested in longer times to complete missions (Pfeiffer & 

Tamash, 2014). The U.S. Army also led a research effort that resulted in ACT-R’s 

implementation with the OneSAF Testbed Baseline8 for the purposes of modeling a 

commander’s situational awareness (Allender et al., 2005; Juarez-Espinosa & Gonzales, 

                                                 
8 OneSAF Testbed is a development environment for a precursor version of OneSAF called OneSAF 
Objective System (Zacharias, MacMillan, & Van Hemel, 2008). 



 

 22

2004). While the OneSAF Testbed Baseline allowed for the modification of weather, 

environmental factors (such as temperature) did not impact the modeling of the 

commander-centric approach (Juarez-Espinosa & Gonzales, 2004). 

d. Combined Arms Analysis Tool for the 21st Century  

In his discussion of the Combined Arms Analysis Tool for the 21st Century 

(COMBATXXI), Blais (2016) describes the discrete-event military analysis simulation as 

needing to provide better human behavior models that mimic actual human behavior 

instead of the behavior of unmanned systems. COMBATXXI does not provide realistic 

enough human behaviors compared to unmanned system behaviors, and an overarching 

challenge exists to supply human behavior models with the fidelity to include more subtle 

properties such as fatigue (Blais, 2016). Interestingly enough, COMBATXXI actually 

contains the software infrastructure to model human physiology, and this comprises an area 

of opportunity for creating better human behavior models that could include non-visual 

properties of human behavior (e.g. “fatigue, hunger, and thirst”) (Blais, 2010, p. 10).  

e. Infantry Warrior Simulation  

 IWARS provides a constructive analysis simulation capability for infantry 

operations at the small unit level (Schleper et al., 2010; Ubink et al., 2008). IWARS 

focuses on analyzing the interplay of Soldiers operating on the battlefield with their 

associated equipment, and contains the capability of modeling physiological details such 

as agent heart rates (Edwards, Grodevant, Lee, & Peralta, 2007). IWARS exists for the 

purposes of analyzing Soldier and equipment effectiveness, and to assist with the 

acquisitions process of infantry equipment (Borgman, 2007; Edwards et al., 2007; Reilly, 

Harper, & Marotta, 2007). The use of IWARS also extends to assessment of “new tactics, 

techniques, and procedures (TTPs)” (Reilly et al., 2007, p. 267). Borgman (2007) notes 

an important balance to be maintained between human behaviors and physics models 

within IWARS that results in some sacrifice of behavioral realism since IWARS is not 

intended as a virtual reality simulation. 

IWARS has been linked to a system called Modeling Individual Differences and 

Stressors (MINDS) Behavior Moderator Engine that worked within a cognitive 
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architecture called Situation Awareness Model for Pilot-in-the-Loop Evaluation 

(SAMPLE) in order to “model infantry squad leader decision making” (Zacharias et al., 

2008, p. 74). Zacharias, MacMillan, and Van Hemel (2008) offer as a possible example 

the idea that MINDS can help facilitate modeling the “effect of fatigue level on 

perception” by serving as a “plug-in for other cognitive architectures…as a means for 

generating personality- or stress-based moderators that can moderate structures or 

parameters of the target cognitive architecture” (p. 74). In sum, Reilly, Harper, and 

Marotta (2007) offer that MINDS helps with modeling the “effects of behavior 

moderators…on perception, situation assessment, and decision making” ( p. 268). The 

authors provide a use case of their system (via a federation of IWARS, MINDS, and 

SAMPLE) in an urban room clearing simulation where a team leader must analyze a 

situation in the room and conduct threat assessments of individuals inside based on things 

like the distance from an agent to a possible threat, as well as if the threat is carrying a 

weapon. Perception with respect to an IED danger area in the environment forms a key 

part of this thesis, but we assume the IED danger area location as a threat a priori rather 

than in an evaluative manner as in Reilly et al.’s (2007) room clearing simulations. 

Eldridge et al. (2012) provide a description of their work on the Soldier Load and 

Speed-Regulation model for linking Soldier’s load weight, Soldier metabolism, and 

resultant Soldier speed in order to measure the overall time needed to perform operational 

tasks. This work focuses largely on physiological effects, as opposed to cognitive effects 

of load weight in relation to human performance. Eldridge et al. (2012) input their model 

into IWARS ostensibly as a means for assessing the model’s interaction with other 

factors such as various environmental conditions.9 Incorporating their model into IWARS 

is an important example of investigating whether or not “encumbrances,” such as heat 

stress or carrying weight, and their “effect…on task performance” can be modeled within 

a constructive simulation (Eldridge et al., 2012, p. 1). 

Woodill, Barbier, and Fiamingo (2010) conducted an experimental effort using 

IWARS that sought to analyze an appropriate squad size based upon conducting urban 

                                                 
9 The authors report that they built their model partly upon Pandolf et al.’s (1977) model.  
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combat operations in a hot, dry environment of over 45º C (113ºF). IWARS served as the 

experimental test bed, which allowed the authors to model the environmental 

temperature, Soldier equipment, ambient air temperature, and the activity of the Soldier 

and the resultant effects on core body temperature (Woodill et al., 2010). Woodill et al. 

(2010) point out that environmental and climactic conditions—specifically mentioning 

ambient air temperature’s role in inducing heat stress within Soldiers—can play a part in 

affecting a Soldier’s performance and result in behaviors such as confusion or errors in 

target acquisition. The authors describe how the experiment took place under three 

different experimental conditions: one where heat stress via the core body temperature 

did not cause the Soldier to stop operating, and two different conditions in which the 

Soldier’s core body temperature exceeding the temperature setting would cause the 

Soldier to stop operating (the temperature settings used were 38.5ºC/101.3°F and 

37.2ºC/98.96°F). Notably, the authors do not provide an explanation for why these 

temperatures served as their chosen settings for thresholds, and define this as a limitation 

of their study and outline varying the threshold values as future work. The study by 

Woodill et al. (2010) proves important for its constructive implementation of a combat 

scenario implementing heat’s impact on human performance, and its calls to experiment 

in the future with different climates and varying Soldier performance decrement beyond 

simply ceasing to perform after a Soldier’s core body temperature reaches a certain point. 

f. MAGTF Tactical Warfare Simulation 

 The Marine Corps utilizes the Marine Corps Air-Ground Task Force (MAGTF) 

Tactical Warfare Simulation (MTWS) constructive simulation with aggregate unit 

resolution in order to train Marine Corps staff members (Program Manager Training 

Systems, 2016). Interestingly, MTWS has the capability to modify a unit’s fatigue level 

based on multiple factors to include temperature and humidity, and can also influence 

perception by affecting a unit’s visual target detection ability based upon weather 

precipitation (MTWS Program: Cole Engineering Services, Inc., 2016). Ultimately, the 

environmental temperature plays no part in affecting unit path finding within MTWS. 
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3. Summary 

As a final point of analysis, we experimented in VBS 3 with a CGF AI’s behavior 

in navigating to a destination waypoint on the opposite side of a danger area imposed by 

an actual emplaced IED. The behavior of the CGF agent in certain scenarios, although 

exhibiting a tactical posture, allowed the agent to get closer to the IED location than one 

would consider tactically sound. At other times, the CGF agent did not move from its 

start location, but instead changed its position between the kneeling and prone repeatedly. 

We did notice instances where the initial distance from the IED and the destination 

waypoint affected how far the agent offset its path around the threat. Larger spacing 

allowed the agent to have better tactical offset as it moved around the IED, while a 

scenario with smaller spacing contributed to the agent having poor offset from the IED. 

Ultimately, the most important takeaway from experimentation with VBS 3 is that the 

environment’s temperature plays no role in affecting the cognitive thought process and 

decision-making of the CGF agent in its pathfinding.  

The preceding offers a general understanding of the basic factors of human 

behavior that must play a role in military simulations. Furthermore, we have delved into 

some of the capabilities offered by FPS virtual simulations such as the VBS series. We 

have also reviewed relevant DOD simulations and their environmental modeling and 

pathfinding capabilities. Next, we take a more thorough dive into the subject areas of 

attention and vigilance, as well as simulation pathfinding techniques. 
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II. HUMAN PERFORMANCE MODELING 

A. HUMAN PERFORMANCE AND THE ENVIRONMENT 

A review of the relevant literature describing a human information processing 

model for human decision-making, as well as a review of attention, vigilance, and 

environmental impacts on human performance follows. This review will provide context 

to the cognitive processes at play in the modeled CGF agent put forth in this thesis. 

1. Cognitive and Behavioral Factors  

Wickens et al. (2013) offers an information processing model that will serve as a 

useful construct for demonstrating modifications to the decision-making process caused 

by environmental heat. 

a. Model of Human Information Processing 

The Human Information Processing (HIP) Stage Model (Figure 3) offers a 

simplified construct for modeling how humans process information from the environment 

and then translate this information into action (Wickens et al., 2013). 

 

 Human Information Processing Stage Model. 
Source: Wickens et al. (2013). 
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The HIP model divides into multiple components that consist of: sensing the 

environment, synthesizing the information from those senses into perception of the 

environment, combining the information that one perceives with working and long-term 

memory to give sensory information meaning and incorporate continuously incoming 

information, synthesizing all of the relevant inputs up to that point, and finally making 

and executing a decision (Wickens et al., 2013). Referencing Rasmussen and Rouse, 

Wickens et al. describes the environmental sensory information that gets “perceived” as 

becoming the “basis of an understanding, awareness, or assessment of ‘the situation’ 

confronting the decision maker…a process that is sometimes labeled diagnosis” (as cited 

in Wickens et al., 2013, p. 248). Wickens et al. (2013) go on to state that “this diagnosis 

or assessment is based upon information provided from two sources, the external cues 

filtered by selective attention…and long-term memory” (p. 248). In a closely related 

concept, working memory, theorized as existing within the HIP Stage model between the 

perception stage and decision-making stage, serves as a storage point to use for the means 

of thinking about perceived information—essentially the “cognition” stage (Wickens et 

al., 2013, p. 5). Additionally, the authors suggest that information processing can begin 

and end at any point throughout the model. Cautiously, the authors point to Wickens and 

Carswell as they describe the model seen in Figure 3 as a “useful framework” that 

“should not be taken too literally” (as cited in Wickens et al., 2013, p. 5).  

Several components of the HIP Stage Model prove especially important for 

further analysis in this thesis. The delineation of sensing information from actually 

perceiving is particularly important in that: “Sensation is not perception, and of this large 

array of sensory information [environmental information] only a smaller amount may be 

actually perceived” (Wickens et al., 2013, p. 4). The authors also note that perception has 

links to lessons learned from long-term memory that plays a crucial role in “determining 

the meaning” of this sensory information (p. 4). 

Attention serves as another component of the HIP Stage Model that deserves 

further review in the context of this effort. Wickens et al. (2013), referencing Wickens 

and McCarley, point out that two functions of attention exist within the process model (as 

cited in Wickens et al., 2013). These functions are attention as an information “filter,” 
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and attention as a source of “fuel” for governing the model (Wickens et al., 2013, p. 5). 

The information filter role means that attention serves as a selection mechanism that 

allows individuals to key in on important information (believed to be more important by 

the human processor, i.e., having “higher perceived value”), while discarding other 

elements of information (Wickens et al., 2013, p. 248). Wickens et al. (2013) describe 

how the role of attention as an information filter translates directly to the cognitive 

property of “selective attention,” and point to long-term memory as the basis for selective 

attention (p. 49). The idea that attention could serve as a source of fuel corresponds to 

attention serving as a mechanism for supplying “mental resources” to key parts of the 

model; for example, the authors offer the analogy of a driver on a foggy night requiring 

more attentional fuel supplied to the perception stage of the process model than they 

would under normal conditions (p. 5). The suggestion of differing “fuel” requirements 

due to environmental factors serves as inspiration for a scenario for this thesis that 

envisions a hot, humid patrolling environment that would place more demands on the 

perceptual portion of a Marine’s information processing model. 

Another important factor concerning the HIP model focuses on the draining of 

attentional resources, resulting in negative affect on the performance of multi-tasking 

(Wickens et al., 2013). In theory, the authors describe how drained attention could lead to 

mistakes made in later portions of the model for other “concurrent” tasks, such as making 

a decision (p. 5). This approach suggests the information process can be divided, per 

Mosier and Fischer, into a “front end” (essentially the sensory and perceptual portions) 

and “back end” (referring to the actual decision made by the human) (as cited in Wickens 

et al., 2013, p. 248). Making a decision at the end of the information process brings about 

a risk estimation process with respect to what could come about as a result of different 

“decision options” (Wickens et al., 2013, p. 248). Wickens et al. (2013) point out that 

human decision making can fail early in the process (i.e., the “situation assessment” 

stage) for a multitude of reasons (p. 248). The authors, referencing Hoffman, Crandall, 

and Shadbolt, argue that discerning the “overall distinction between front-end and back-

end processes” proves “critical to understanding decision failures” (as cited in Wickens et 

al., 2013, p. 248). The authors point to the work of Weigmann, Goh, and O’Hare, in 
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describing the importance of this distinction, “Very different solutions may be applied to 

remedy environments where decisions fail because of poor information and situation 

assessment, compared to those when failures result from inappropriate (e.g., too risky) 

choices in the face of a well-diagnosed situation” (as cited in Wickens et al., 2013, p. 

248). 

b. Attention and Vigilance 

In order to provide a mechanism for modulating attention and vigilance within a 

CGF agent’s human information processing behavior, a more thorough review of relevant 

definitions of attention and vigilance proves necessary. Wickens et al. (2013) provide 

simplified definitions of a few relevant types of attention—specifically selective, focused, 

divided and sustained attention. The authors illustrate how sustained attention correlates 

strongly with vigilance (discussed below), divided attention describes paying attention 

between multiple information sources, and focused attention describes honing in on key 

pieces of information and ignoring distraction. Pew and Mavor (1998) describe divided 

attention and multi-tasking as highly relevant to military combat operations. The authors 

even note an example of an infantryman having to path find at the same time as 

completing other combat tasks. Wickens et al.’s (2013) focus on selective visual attention 

proves quite relevant when considering certain military operations such as patrolling—

especially when one sees that patrolling incorporates many of the tasks that rely on 

selective visual attention. The authors describe some of these relevant selective visual 

attention types of tasks: “general orientation and scene scanning,” as well as 

“noticing”—essentially maintaining a look out for and “responding to…somewhat 

unexpected events” (p. 50). Selective visual attention also includes “searching for 

specific, usually pre-defined targets” (p. 50). 

Chun, Golomb, and Turk-Browne (2011) describe attention as consisting of 

multiple characteristics to include limited capacity, selection, modulation, and vigilance. 

The limited capacity and selection characteristics roughly correspond to Wickens et al.’s 

(2013) description of how not all sensory information from the environment can get 

perceived by an individual, and the idea of attention as a perceptual filter (Chun et al., 
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2011). Chun et al. (2011) extends the idea of selection by describing it essentially as 

decision-making between possible options. The concept of modulation corresponds most 

strongly with Wickens et al.’s (2013) description of attention as a fuel within the HIP 

model. Chun et al. (2011) describe modulation as the degree to which “attention 

determines how well the target information is processed,” further, the speed and accuracy 

with which tasks or responses get performed serve as key additional details (p. 75). 

Similarly, vigilance is described as being related to the modulation component of 

attention, but focused on the “ability to sustain…attention over extended periods of time” 

(p. 76). As a matter of practicality for this thesis, the concept of attention manifests itself 

in a CGF model because there often exists an inordinate amount of information in an 

operational environment to which an individual must attend. Similarly, Chun et al.—

referencing the work of Treisman and Gelade, and Wolfe and Horowitz—point out that 

“in natural contexts, observers typically search for a target amid many other competing 

stimuli” (as cited in Chun et al., 2011, p. 87). The authors eloquently summarize these 

challenges in a manner that could apply to military ground combatants, making attention 

a relevant human characteristic to model in a CGF: “The problem, that there is too much 

information to process; the solution, to select and modulate information most relevant for 

behavior; and the challenge, to sustain vigilance” (p. 76). 

A handful of studies designed to measure vigilance prove useful when describing 

vigilance as a cognitive process. Notably, Szalma, Teo, Hancock, and Murphy (2011) 

examined the relationship between vigilance and tactical tasks and identify the 

importance of vigilance training for detecting IEDs, even proposing video game-based 

approaches for doing so. In another study, vigilance performance in terms of percent 

correct detections of stimuli (auditory, visual, and tactile) suffered from load carrying 

during completion of an obstacle course (Mahoney, Hirsch, Hasselquist, Lesher, & 

Lieberman, 2007). 

c. Attention, Working Memory, and Visual Search 

Chun et al. (2011) splits the classification of attention into two categories—

internal and external (generally perceptual) attention—where internal attention deals 
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primarily with cognitive characteristics such as the general areas of working memory, long-

term memory, and response selection.10 The authors further hypothesize that working 

memory sits “at the interface between internal attention and external attention,” but places 

it within internal attention “because it operates over internal representations (of what is no 

longer externally available)” (p. 85). Working memory limitations with respect to vision 

consists of the ability to store approximately four objects (Chun et al., 2011). This 

limitation could prove important within the context of this thesis when considering 

environmental impacts on human cognitive performance.  Visual search constitutes a task 

essentially related to selective attention that proves highly applicable to the means with 

which one can model an environmentally impacted CGF agent (Wickens et al., 2013). 

Simply put, visual search results from attempting to find a “target” utilizing one’s eyes as 

one applies their selective attention in the given search area, and the target of a search task 

receives definition prior to the task taking place (Wickens et al., 2013, p. 56). Chun et al. 

(2011) note that visual search tasks prove highly related to human mistakes (consider failed 

security baggage screening among other examples). However, the authors (summarizing 

the works of Bar; Chun; Torralba, Oliva, Castelhano, and Henderson) note that visual 

search can be aided “when targets appear in predictable locations, cued by background 

context and past experience” (as cited in Chun et al., 2011, p. 87).  

A synthesis exists resulting from the work of Oh and Kim, and Woodman and 

Luck, concerning the inter-relation of visual search and working memory in terms of 

humans executing visual search and spatial working memory tasks at the same time that 

can result in reduced search efficiency—meaning that both separate tasks exhibit a 

“shared capacity” (as cited in Chun et al., 2011, p. 85–86). Similarly, vigilance tasks 

requiring a considerable amount of mental resources can prove vulnerable to interference 

when performed simultaneously with other tasks (Wickens et al., 2013). Further, 

Caggiano and Parasuraman found an increased “vigilance decrement” can result when a 

                                                 
10 Wickens et al.’s (2013) information processing model incorporates a “response selection” component—
what we have subsequently referred to as the decision-making point within the model (p. 4). 
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simultaneously executed vigilance task and a separate task both require resources from 

spatial working memory (as cited in Wickens et al., 2013, p. 28). 

Visual search serves as a crucial component of numerous military applications, 

especially infantry patrolling tasks, where the infantryman must scan their field of vision 

for enemy targets, IED threats, danger areas, and a multitude of other relevant 

information. Often times, training and past enemy tactics will guide infantry personnel to 

expect threats from certain places, such as an IED placed under a road in a culvert (the 

IED danger area used in our model). Accounting for the interconnectedness of attention, 

vigilance, visual search, working memory, and other tasks as we have outlined from the 

literature would lead to robust and interesting manipulations within CGF agents 

executing similar tasks within a FPS simulation. As previously alluded to, the purpose of 

this thesis is to model the interplay of heat, attention, and vigilance while patrolling, 

ultimately showing how heat can negatively affect attention and vigilance such that 

proper dispersion from threats, or danger areas, in a Marine’s chosen path declines. Due 

to the complexity involved with fully incorporating working memory and visual search 

into a potential CGF model, we will first assume that working memory performs its 

cognitive role as described within Wickens et al.’s (2013) model. Next, we will also 

assume that the agent within our model executes visual search, but that they will be aware 

of the IED danger area a priori. 

2. Environmental Factors  

Environment impacts of heat have been shown to have a significant impact on 

cognitive performance. In their 2007 meta-analysis, Hancock, Ross and Szalma 

completed an extensive statistical analysis of fifty-seven studies derived from a large 

body of literature where the impacts of environmental heat and cold on human 

performance were measured. Among the key takeaways from this work centers on its 

finding that “performance under thermal stressors proved on average to be approximately 

one third of a standard deviation or about 11% worse than performance at a comparative 

thermoneutral temperature” (Hancock, Ross, & Szalma, 2007, p. 857). This finding 

incorporates both hot and cold temperature stressors; however, the mean effect size due 
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to heat (ḡ = -0.29) alone proved only slightly lower than the mean effect size found for 

the overall meta-analysis including both hot and cold stressors (ḡ = -0.34) (Hancock et 

al., 2007).11 A key requirement of the Hancock et al. (2007) meta-analysis included the 

need for each study to have a room temperature control group present for comparison to 

the experimental condition, thus negative numbers for mean effect sizes signify 

decremented performance in the experimental condition.12 An earlier meta-analysis 

performed by Pilcher, Nadler, and Busch (2002) includes an additional factor for analysis 

concerning how pre-task exposure to temperature (especially for greater than one hour) 

results in negative performance of tasks in the heat. The inclusion of pre-task exposure 

approach draws a parallel to a combat patrolling environment in which military personnel 

may live and be acclimatized to hot surroundings prior to executing a patrol. 

Hancock et al.’s (2007) meta-analysis also provides an interesting breakdown of 

the various ways in which they analyzed their data. For example, a few of the groups that 

the studies were classified into included ones that split the studies into a category for heat 

at a level of 85º Fahrenheit (F) Effective Temperature (ET) (equivalent to 87.4ºF Wet 

Bulb Globe Temperature (WBGT)), as well as a breakdown along the lines of perceptual, 

cognitive, and psychomotor tasks. Notably, Hancock et al. (2007) required that enough 

information existed in a study to allow for calculating the WBGT in order for the study to 

make it into the meta-analysis. Other important category breakdowns offered in the 

Hancock et al. (2007) meta-analysis, related to time of task exposure for combined heat 

and cold studies into one hour blocks from one to three hours (0-1 hour, 1–2 hours, 2–3 

hours and greater than 3 hours), categories to measure temperature’s impacts on speed 

and accuracy of task completion, and breakouts into multiple temperature ranges (78.3ºF 

ET – 85ºF ET, 85 - 95.4º F ET, and greater than 95.4ºF ET prove most important for this 

thesis). The higher ranges of 85–95.4ºF ET, and over 95.4ºF ET exhibited the largest 

                                                 
11 See Hancock et al. (2007) for a detailed description of the statistical methods used for calculating effect 
sizes, as well as more explanation of outlier analyses—a purported extension of this work over previous 
work done by Pilcher, Nadler and Busch (2002).  

12 Pilcher et al. (2002) take a similar approach. 
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mean effect sizes in favor of heat having an effect on performance (-0.40 and -0.39 

respectively) (Hancock et al., 2007). 

Hancock et al.’s (2007) meta-analysis argues for a 85ºF ET “threshold” as the 

point of demarcation for analysis due to the fact that the body begins to store heat without 

any resistance, and the body’s core temperature begins to rise at this temperature (p. 860). 

Hancock et al. (2007) refers to multiple studies as support for this threshold. There is 

more to this finding than just the storage of heat in the body. The authors report how 

multiple variables aside from heat can contribute to performance decrements: “Mean 

performance change alone is insufficient to represent a full picture of what is going on as 

stress increases and, instead, that increasing variability in performance scores represents a 

crucial indicator” (p. 860). This delineation proves important due to the similar mean 

effect sizes between the greater than and less than 85ºF ET categories (ḡ = -0.25 and -

0.27, respectively), while their effect size variances differ greatly (0.67 and 0.24, 

respectively) (Hancock et al., 2007). The authors believe that multiple confounding 

variables such as exposure time to the temperature, type of task, and “other 

environmental factors” likely contribute to this result (p. 860). 

As previously mentioned, Hancock et al.’s (2007) meta-analysis includes an 

examination of duration of exposure time in one hour blocks from less than an hour to 

greater than three hours, but do not classify these by hot or cold temperatures. The 

authors describe how the greatest increase in performance decrement occurs as one 

increases in time from the 1–2 hour mark and then to the 2–3 hour mark (having the 

greatest decrement). They also point out that although the greater than three hour zone 

and less than one hour zone had similar low effect sizes for human performance of tasks 

this constituted a statistical “artifact,” and that the greater than three hour zone still 

proves bad for human performance and is generally intolerable (p. 863). The authors 

mention that their meta-analysis could not find enough studies that incorporated 

acclimatization—a topic that would have implications for analyzing heat exposure 

duration results—and point to it as an area for future work. 

Hancock et al. (2007) do provide some categorical break out of temperature 

depending upon whether the tasks occurred for greater than two hours, or less than two 
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hours. In this study, they found that less than two hours of task performance in greater 

than 85ºF ET proved worse for performance than if performed for longer than two hours, 

and allude to “acclimation” as a potential reason for this difference (p. 867). 

Another review of the extant literature revealed numerous studies that support the 

85º demarcation line (although they focus on 85ºF WBGT rather than ET)—especially as 

it relates to visual vigilance tasks and vigilance (Johnson & Kobrick, 2001). Johnson and 

Kobrick (2001) conclude from their analysis of several studies that 85ºF serves as the 

best temperature for the performance of visual vigilance tasks. In this investigation, the 

authors focus specifically on tasks such as watch standing or surveillance, stating that 

heat serves to primarily effect the visual portion of these tasks. From their review of 

studies, the authors also attribute boring, simple tasks (or “low arousal” tasks) in 

conjunction with heat as another aspect causing hindered vigilance performance (p. 154). 

The authors report on a National Institute for Occupation Safety and Health criteria report 

that 85ºF WBGT serves as the upper limit for exposure to the heat if one desires 

“unimpaired mental performance” for a human executing a task for the length of time of 

“two hours or longer” (as cited in Johnson & Kobrick, 2011, p. 137). Furthermore, in 

reference to the same source, the authors describe how one hour of task performance 

when temperatures exist around 109ºF WBGT serves as another limit for acceptable 

performance. Johnson and Kobrick (2001) also provide an extensive treatment of 

multiple studies pertaining to acclimatization and human performance in heat that prove 

interesting, but beyond the scope of this thesis. 

Hancock et al.’s (2007) breakout of the studies for all temperatures according to 

where they fall within an information processing construct is important in that they found 

the greatest effect of heat stressors on tasks relating to perception, then psychomotor 

response, and lastly cognitive types of tasks. Interestingly when the studies were broken 

out according to greater or less than 85ºF ET, the authors could not offer a conclusive 

analysis with respect to perception studies grouped in the temperatures below 85ºF ET 

category due to too few effect sizes available in the meta-analysis study sample fitting 

those parameters. However, Pilcher et al.’s (2002) meta-analysis did find a more 

degraded degree of performance in the studies grouped as attention and perception tasks 
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for temperatures over 80ºF WBGT, as compared to the level of negatively affected 

performance found in attention and perceptual task studies grouped into the category 

where the temperature stood at 65ºF or less. 

Fortunately, enough studies existed for the Hancock et al. (2007) meta-analysis to 

analyze the 85ºF ET break down according to task completion accuracy and reaction 

time, yielding results where response time increases above 85ºF ET. Interestingly, when 

outliers were removed from their study they found that “accuracy is impaired more above 

85ºF (29.4ºC) ET, whereas impairment of speed occurs more at temperatures below 85ºF 

(29.4ºC) ET” (p. 867). Johnson and Kobrick (2001) comment on the difficulty of 

analyzing heat’s effects on reaction time due to differences in the approaches and study 

conditions in the studies they looked at, ultimately concluding that the “resulting findings 

tend to be contradictory” (p. 138). The authors also identify greater reaction speed 

variability as taking place when temperatures are high or in complex task performance. 

Similarly, Hancock et al. (2007) found a greater amount of variability for response time 

performance as compared to accuracy for thermal stressors in general, likely because of 

moderator variables more apparent in the response time category. Ultimately, enough of a 

relationship exists in the analysis to see that heat interacts with speed and accuracy in 

task performance—especially when Hancock et al. (2007) break down their analysis to 

compare heat’s effects on perceptual accuracy and perceptual response time which 

showed significant decreases in accuracy and response time. 

The importance of the conclusions offered by Hancock et al.’s (2007) work 

centers around multiple factors, particularly: “The magnitude, and in some cases the 

direction, of the effect of thermal conditions on performance depended on particular 

combinations of exposure range (i.e., heat/cold), task type, performance measure, and the 

duration and intensity of exposure” (p. 870). The authors also offer that their findings 

support an “extended-U” curve (see Figure 5) over the Yerkes-Dodson (Yerkes & 

Dodson, 1908) “inverted U” curve (see Figure 4) that compares arousal to human 

performance; the extended-U curve offers a broader range of “relatively stable” human 

performance at a higher level bookended by significant performance drop offs as 

physiological and psychological stress levels increase (Hancock et al., 2007, p. 871). 
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Hancock and Warm (1989) and Hancock and Vasmatzidis (2003) offer more in depth 

descriptions of this extended-U curve, also called the Maximal Adaptability Model. The 

key takeaway from this model for our purposes of this thesis comes from Hancock and 

Vasmatzidis (2003) who reference the work of Kahneman in stating a model assumption 

“that heat exerts its detrimental effects on performance by competing for and eventually 

draining attentional resources” (as cited in Hancock & Vasmatzidis, 2003, p. 367). This 

idea appears quite similar to our discussion of Wickens et al.’s (2013) discussion of 

attention as a fuel. 

 

 Yerkes-Dodson Inverted-U Curve. 
Source: Hancock and Vasmatzidis (2003).  
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 Hancock and Warm’s Maximal Adaptability Model. 
Source: Hancock and Warm (1989). 

B. BUILDING HUMAN PERFORMANCE MODELS 

The following section details frameworks and techniques for modeling human 

performance. As previously mentioned, the realism of human behavior models is a key 

factor to this investigation. The overarching call for creating more unpredictable and 

adaptive models of human behavior is not necessarily a new requirement (North Atlantic 

Treaty Organization (NATO), 2009; Pew & Mavor, 1998; Wellbrink, 2003). Further, the 

NATO Task Group 128 report, referencing the work of a previous NATO report from 

Dompke, describes a shortage of necessary behavior moderators resulting in “brittle, non-

adaptive, and predictable” models (as cited in North Atlantic Treaty Organization 

(NATO), 2009, p. 1–3).  

The focus of NATO Task Group 128’s report centers on constructive simulation 

implementations of human behavior, and provides extensive description on a range of 

topics including performance shaping functions and multiple resource models of human 

information processing (similar to Wickens et al.’s (2013) model, albeit more simplified) 

(North Atlantic Treaty Organization (NATO), 2009). The report also describes modeling 

efforts in cognitive architectures. Ultimately, the Task Group 128 report finds that 

“modeling of post-receptive perceptual processes such as attention…is perhaps the best 

developed aspect of perceptual modeling by the HBR [Human Behavior Representation] 

community” (p. 4–7). 



 

 40

We benefit from a number of NATO Task Group 128 observations of techniques 

used within the field of constructive simulation in this thesis. One technique stems from 

the lack of ability in virtual environment simulations to provide detailed models of 

environmental stimuli, requiring effective shortcuts where one supplies the details (i.e., 

position or identifiers) about the environmental stimulus directly to entities by embedding 

the data within the entity’s code (North Atlantic Treaty Organization (NATO), 2009). 

Another observation from the report comes from the field of error modeling and 

stochastic discrete event simulations, where the report relates how error modeling can be 

derived by sampling from the “extremes of the distribution of the task times or 

accuracies” (p. 8–10). Finally, the NATO Task Group 128 report offers that an alternative 

to performance shaping functions for modeling the effects of stressors involves using a 

heuristic to model an environmental stressor’s impact on human performance. 

1. Waypoint Graphs and A* Search Algorithm  

Military virtual training simulations and commercial FPS video games often 

utilize an A* pathfinding search in conjunction with waypoint graphs in order to support 

the movement of an agent within the game’s environment. The A* search algorithm, in 

conjunction with a mapping of a game environment via a waypoint graph representation, 

serves as a mechanism for allowing agents to navigate paths within a virtual game or 

simulation environment (Tozour, 2003). Russell and Norvig (2010) and Stout (2000) 

provides a concise overview of the A* search algorithm. Stout (2002) also offers a few 

approaches to dividing an environment into a search space. 

a. A* Search 

Russell and Norvig (2010) describe A* search as an algorithm that “evaluates 

nodes,” such as those in a simulation environment’s waypoint graph, “by combining g(n), 

the cost to reach the node, and h(n), the cost to get from the node to the goal” (p. 93). The 

combination of these two costs results in the “estimated cost of the cheapest solution 

through [node] n,” written as “f(n)” (p. 93). Stout (2000) terms g(n) as the 

“CostFromStart(X)” (where “X” represents the node under evaluation), and h(n) as the 

“CostToGoal(X)” in pseudocode (p. 255). The cost from the start usually consists of total 
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“distance traveled” to that node, but “other factors can be added into this function, such 

as penalties for passing through undesirable areas” (Stout, 2000, p. 259). The cost h(n) is 

also called a “heuristic” cost (Stout, 2000, p. 255). Similar to Russell and Norvig’s (2010) 

naming conventions, this thesis will refer to a node’s cost from the start as the “g” cost, to 

the node’s heuristic cost as the “h” cost, and to the node’s combined cost as the “f” cost 

(see Equation 1.1).  

 
 f g h    (1.1) 

     

Russell and Norvig (2010) provide an outline for how heuristic costs must meet 

the principle of “consistency” via a triangle inequality in order to be optimal during A* 

searches of graphs (p. 95).13 A heuristic cost must also prove “admissible” in that it 

“never overestimates the cost to reach the goal” (Russell & Norvig, 2010, p. 94). Both 

Russell and Norvig (2010), Rabin (2000b), and Stout (2000) provide some commentary 

on the value of choosing appropriate heuristics for speeding up searches with the 

downside being paths that may no longer prove to be the most optimal due to 

overestimating heuristic values. Stout (2000) describes another approach for decreasing 

search time via utilization of a “Closed” list; essentially the algorithm ignores previously 

explored locations (p. 255). Stout (2000), Rabin (2000b), and Darken (2016) provide 

inspiration for this thesis to achieve our desired agent behavior in using the 

overestimation technique in manipulating the heuristic cost of waypoints, as well as 

manipulating the additive cost of the distance traveled to reach the current node. 

b. Waypoint Graphs 

Tozour (2003) provides an overview of different approaches to constructing a 

waypoint graph within a game environment, as well as the fundamental definition that we 

will use going forward. Importantly, Tozour identifies that “fundamentally, all search 

spaces are graphs: they all consist of some number of atomic units of navigation, or 

nodes, and some number of connections, or edges, between pairs of nodes” (p. 85). 
                                                 
13 Russell and Norvig (2010) define an “optimal solution” as having the “lowest path cost among all 
solutions” (p. 68). 
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Essentially, the fundamental way that agents automatically navigate around a virtual 

environment entails utilizing a search algorithm, such as A*, to search through a 

waypoint graph, called a “search space,” looking for the “optimal path” to follow 

(Tozour, 2003, p. 85–86). Tozour (2003) also points out that the size of a search space 

has implications for search speed and memory usage. Furthermore, the author describes a 

key nuance in the definition of what constitutes an optimal path. The textbook definition 

offered by the author of optimal paths, “That is, the least expensive path from [point] A 

to [point] B,” at times conflicts with the reality “that the optimal path is not always the 

shortest path” (p. 86). To illustrate this, Tozour offers an example where the faster route 

for an agent consists of a longer curved road avoiding a swamp rather than the slow, 

straight through path. 

Tozour (2003) highlights two related approaches to creating search spaces: grids 

of squares for two-dimensional game environments, and waypoint graphs for three-

dimensional game environments.14 The author describes how waypoint graphs allow for 

a game designer to put waypoints anywhere within the game and can prove useful for 

navigation in a number of indoor and outdoor environments. A technique that allows for 

more realistic-looking paths in both grid and waypoint graph approaches is called “string-

pulling,” which essentially ignores unnecessary path nodes if two nodes can be “directly” 

connected (Tozour, 2003, p. 89). Tozour (2003) mentions another method known as 

Catmull-Rom splines, and describes how these essentially provide a “smooth, curved 

path” between two points (p. 89).15  

2. Advanced Modifications to A* Search 

An advanced A* search implementation for creating more realistic path finding 

behavior of agents based upon the tactical situation is put forth by van der Sterren (2002). 

The author describes how his approach—”tactical path-finding”—alters the A* 

algorithm’s heuristic to account for moving through enemy fire and observation areas, as 

                                                 
14 See Tozour (2003) for a number of other search space approaches, including navigation meshes.  

15 Rabin (2000a) describes how to implement Catmull-Rom splines in detail.  
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well as the ability for the enemy to aim effectively, thus enabling an agent to move 

realistically between positions of cover and concealment (p. 294). Further, the author 

relates how he does so via a weighting approach for each of the tactical criteria within the 

desired behavior of covered and concealed path finding. The author points to Reece et al. 

(2000) who utilized a similar approach in their ModSAF implementation, arguing that 

both A* implementations similarly “balance short travel time versus visiting risky 

locations, based on the weights for each type of cost” (as cited in van der Sterren, 2002, 

p. 296).  

Van der Sterren (2002) provides several other worthy considerations for 

enhancing the A* algorithm to make it more realistic. Some of these include accounting 

for the “distance to threat and the threat’s weapon,” since these both “might also have a 

large influence on the risk of being in the line-of-fire” (p. 301). The author also advocates 

intelligently applying his techniques to go beyond just “avoiding known and suspected 

hostile lines-of-fire,” but to use them to “avoid weak combat positions” (p. 301). The 

author proposes using his techniques in conjunction with those of van der Sterren (2001) 

to assess more cost to weak positions, thereby encouraging agent paths that “will try to 

avoid them” (p. 301).  

Van der Sterren’s (2001) approach to extracting information from waypoint 

graphs allow for more dynamic artificial intelligence of CGF entities since one would 

prefer CGF “capable of automatically annotating” a game environment, rather than 

resorting to “manually editing dozens of waypoints” with specific properties (p. 2). 

Harder and Darken (2016) provide an illustration of a non-manual approach: “Given 

fixed enemy positions, we can perform a preprocessing step to tag all locations in the 

navigation graph with their valid targets” (p. 7). Van der Sterren (2001) illustrates his 

approach via an example where an entity charged with executing a task as a sniper 

analyzes the game’s terrain via a mathematical formula that incorporates terrain and 

sniper position properties to choose the best “sniping spots” (p. 1). 

The approach utilized by van der Sterren (2001) demonstrates the possibilities for 

applying the model to the problem of dynamically assessing danger area locations, or 

more generally positions occupied by the enemy. A danger area approach to terrain 
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reasoning could re-purpose van der Sterren’s (2001) sniper equation heuristic that 

assesses a sniper position’s ability to over watch locations with heavy enemy traffic, to a 

heuristic that classifies enemy over watched terrain at choke points highly frequented by 

heavy friendly traffic (we propose a bridge over a creek culvert as an example) as a 

danger area. Borkman, Verdesca, and Watkins (2012) implement a similar idea in a 

heuristic for an agent’s route that determines danger areas based on what positions the 

enemy will likely use to watch the agent’s route. Lidén (2002) offers a paper similar in 

nature to that of van der Sterren (2001) in utilizing waypoints to derive meaning from the 

game’s tactical environment, but different in that Lidén stores such information in bit 

format. Furthermore, Lidén (2002) offers a technique for assessing a waypoint graph for 

“pinch points,” essentially choke points, within an urban environment (p. 7). 

Straatman, van der Sterren, and Beij (2005) conduct research in a similar vein, 

offering their technique of “dynamic procedural combat tactics” utilizing “position 

evaluation functions” for terrain assessment within a commercial video game known as 

Killzone (p. 1). The authors describe inflexible tagging as providing limited utility for 

dynamic situations, or where the “environment is likely to change” (p. 2). Their effort 

proposes position evaluation functions as the alternative, and illustrate how to use these 

for picking positions for agents and for promoting tactical path finding for agents. 

Essentially, a waypoint has several tactical and environmental characteristics about itself 

evaluated and combined into a numeric representation given the tactical situation; this 

waypoint’s numeric value then gets ranked against adjacent waypoint values, and the 

waypoint possessing the highest value serves as the position for the agent to move to 

(Straatman et al., 2005). The authors describe how they also apply this technique in a 

similar manner to van der Sterren’s (2002) tactical A* approach, where path waypoints 

are evaluated and contribute to the A* path’s cost function. Importantly, Straatman et al. 

(2005) offer how a position evaluation function can be modified by adjusting the 

weighting of its components resulting in various behaviors. For example, one could 

adjust the function’s weights such that attacking agents prefer “out in the open positions 

over positions near cover,” or one could have agents factor in properties such as the 

distance from themselves to a main threat (p. 8). 
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Borkman et al. (2012) describe a research effort implemented utilizing IWARS 

for creating AI algorithms focused on route planning and finding over watch positions. 

The authors demonstrate how their route planning algorithm utilizes A* search, and 

incorporates numerous heuristic values based upon multiple tactical considerations, 

called “factors,” such as where the enemy or positions of cover could be (p. 21). This 

approach appears quite similar to many of the previously discussed techniques. A key 

takeaway from Borkman et al. (2012) includes their implementation of line-of-sight ray 

casting from a possible agent over watch position’s “view point” to a pixel field (called a 

“raster”) as a means for determining what the agent can observe (p. 29). Darken (2004) 

describes this method in detail, as well as a simpler method (i.e., fewer rays) called 

“multiple ray casting” (p. 3). 

A key consideration in this thesis’s creation of the implementation of a heat-

influenced limited attention pathfinding algorithm entails how the CGF entity will 

perceive the presence of an IED threat from the culvert programmatically speaking. 

Abdellaoui et al. (2009) highlights that achieving realistic behavior in CGF requires that a 

choice exists for how entities will perceive their environment between detecting the 

environment via their own “sensors,” or having “ground truth” fed to them automatically 

(p. 2–5). Wray et al. (2002) provide an example of this automatic feed of ground truth via 

their use of “map annotations” to allow Unreal Tournament CGF to know their location 

within the game environment (p. 6). 

3. Limitations of A* Search 

Logan and Alechina (1998) warn that aggregating cost functions in a manner 

similar to the approach advocated by van der Sterren (2002) can lead to an inability to 

determine which adjustment to a specific performance criteria led to the outcome 

behavior, and often means wholesale changes to each criteria’s weighting in order to 

manipulate the weighting of only one. Another concern with multiple-criteria weighting 

problems, specifically in the path finding domain, is that they may require different 

weighting combinations per specific scenarios—essentially one set of criteria settings 

may not prove equally useful or applicable across all possible scenarios (Logan & 
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Alechina, 1998). Furthermore, the authors point out that “many real-world problems are 

difficult or impossible to formulate in terms of minimising (sic) a single criterion,” and 

state that path planning “can be difficult to formulate…in terms of minimising a single 

criterion” as well (Logan & Alechina, 1998, p. 444). Stated another way by Ritter et al. 

(2003), “It is also far from clear that human behavior solely optimizes on a single 

criterion” (p. 30). 

C. THESIS MOTIVATION 

The motivation for this thesis stems from my previous experience as an infantry 

platoon commander utilizing the DVTE system for mission rehearsals of training 

missions. In one particular rehearsal, the lack of realism inherent in the avatars 

representing myself and the key leadership of my platoon led to a lack of “buy in” to the 

usefulness of the simulation for training for our upcoming training mission. The avatars 

exhibited superhuman qualities such as covering multiple kilometers in “sprint” mode in 

mere minutes, rather than the hours that such a movement would require. Although such 

a capability proves ideal for focusing a simulation exercise on the key training objectives, 

rather than spending significant amounts of time on less important tasks, this quality 

would not prove ideal for ground combat units hoping to use the simulation for training at 

patrolling tasks where movement speed and relative location to fellow unit members does 

matter. Furthermore, this lack of realism led many of us utilizing the simulation to see it 

as more of a toy, and less as a training tool. 

D. HYPOTHESES 

This goal of this thesis is to serve as a proof-of-concept for how virtual training 

simulations utilized by the U.S. Marine Corps and U.S. Army can embed more realism 

within the simulation to help promote more faith in simulation as a necessary training 

tool. As previously mentioned, the U.S. Army has taken steps to increase the realism of 

the portrayal of Soldier avatars within VBS 3 to include modeling the impacts of fatigue 

and physical fitness test performance resulting in, as a U.S. Army Training and Doctrine 

Command analyst points out, “Small unit leaders” receiving the “capability to understand 

the performance of their squad” (Lopez, 2014, paragraph 5). Similarly, this thesis 
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identified a gap in virtual training simulations where Marines do not receive an adequate 

representation of the decremented decision-making capabilities of their fellow Marines as 

a result of the hot, humid environments that the Marine Corps currently operates in. 

Essentially, Marines and Soldiers would greatly benefit from training where they could 

learn to recognize “when a given individual is showing appreciable changes in 

performance and cognition” (Lowe et al., 2007, p. S98). Pew and Mavor (1998) echo this 

need: 

For training…the behaviors that are important to represent realistically are 
those that can be observed by the other participants in the simulation, 
including physical movement and detection and identification of enemy 
forces. It is important that observable actions be based on realistic decision 
making…achieving realism with respect to these observable outcomes 
requires that the models of human behavior employed in the simulation be 
based on psychological, organizational, and sociological theory. (p. 1–2) 

This thesis seeks to address this gap to promote a better training experience for 

Marines and Soldiers. In order to do so, our proposed model will test the following 

hypotheses: 

1. Hypothesis 1A0: The mean difference between the random number 
generator (RNG) derived hot and mild temperature condition normal 
distribution samples equals zero. 

 

2. Hypothesis 1B0: There is no difference between the mean of the respective 
temperature condition’s RNG-generated sample normal distribution and 
the specified mean for the temperature condition’s normal distribution.  

 

3. Hypothesis 20: The mean difference between each temperature condition 
sample’s IED Danger Area Radius sizes equals zero. 

 

4. Hypothesis 30: The mean difference between each temperature condition 
sample’s path lengths equals zero 
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III. METHODOLOGY 

As discussed in Chapter II, certain temperature conditions in a given environment 

can deleteriously affect one’s vigilance and attention to their surroundings. In order to 

explore improving the fidelity of autonomous agents for use in military-relevant 

simulations, this thesis proposes the development of an agent behavior model that 

represents decremented perceptual capabilities due to thermal heat factors. To test this 

model, we developed a scenario based on a common patrolling task. The scenario centers 

on a ground combatant encountering a bridge over a culvert which provides passage over 

a small, dry streambed—a potential IED danger area (United States Marine Corps, n.d.). 

The agent must navigate around the danger area to the opposite side in order to continue 

the patrolling mission. We incorporate recommended minimum standoff distances for 

personnel in the course of a unit’s standard reaction to an IED as the basis for the general 

premise that if one senses an IED danger area in their path they will take measures to 

avoid the danger posed by that location by offsetting their direction of travel (United 

States Marine Corps, n.d.). 

Based on empirical evidence provided by Hancock et al. (2007) suggesting that 

one can expect human performance perceptual decrements in hot environments, we make 

the base assumption that the agent will choose a path closer to the recommended offset 

from a danger area, or potential threat, as the agent patrols around the danger area in mild 

temperatures. Conversely, a hot temperature environment will result in agents achieving 

an offset less than the recommended distance due to decremented vigilance and attention 

to the potential threats in the environment. These assumptions guided an initial 

implementation within an experimental modeling environment for the A* search 

algorithm, as well as in the robust model implementation created for the proof-of-

concept. 

All development took place within the Unity game engine utilizing Microsoft 

Visual Studio 2015 as the underlying code development environment for scripting 

behaviors (Microsoft Corporation, 2016; Unity Technologies, 2016; Unity, 2017). 

Creation of the proof-of-concept and all statistical analysis testing took place on an Asus 
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Notebook UX303UB running Microsoft Windows 10 Home Edition with an Intel Core 

i7-6500U two-core 2.50 GHz processor with 12.0 GB of Random Access Memory 

(RAM). 

A. DEVELOPMENT OF MODEL PROOF-OF-CONCEPT 

Prior to developing the final model, the A* Explorer program served as a platform 

for providing an initial illustration of the final model’s intended visualization under both 

a “hot” temperature condition and a “mild” temperature condition (Matthews & van der 

Sterren, 2002). A* Explorer implements the tactical path finding enhancements to the 

closed list form of the A* algorithm as described by van der Sterren (2002) (Matthews & 

van der Sterren, 2002). 

Many types of IEDs require outdoor standoff distances greater than the 

recommended minimum standoff distance (National Ground Intelligence Center, n.d.). 

To mimic this, we used A* Explorer’s enhancements to incorporate as extra costs both 

the threat agent’s line of fire to a potential path cell and additional cost for the distance 

from the threat to the potential path cell (Matthews & van der Sterren, 2002). In our 

environmental model’s case, the threat agent’s line of fire cost represents the possibility 

of a fragmentation pattern from an exploding IED (assuming an open environment with 

few obstacles to blast fragmentation) reaching the potential path node, and the cost for 

distance of the path node from the threat will help assess the needed offset from the IED 

danger area. These additional costs get incorporated into the “g” portion of the cell’s total 

cost (Matthews & van der Sterren, 2002).16 

As shown in Figure 6 and Figure 7, cell colors within the A* Explorer 

environment correspond to additional costs assessed to that node. Each cell within the 

black border walls delineating the navigating agent’s “operational environment” received 

an additional cost assignment to help facilitate the agent’s navigation along a specific 

path to illustrate desired behavior per the temperature condition present in the 

                                                 
16 We used the diagonal movement setting in our A* Explorer models and the setting for movement costs 
was set to assign cost on a cellular basis.  
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environment. In the mild temperature environment (Figure 6), the agent navigates along a 

path more offset from the IED danger area. In the hot environment (Figure 7), the agent’s 

path travels much closer to the IED danger area as it travels around it. A black line 

connecting the start and goal cells depicts the agent’s path generated by the A* algorithm. 

 

 Mild Temperature Environment A* Agent Path. 
Source: Matthews and van der Sterren (2002). 

 

 Hot Temperature Environment A* Agent Path. 
Source: Matthews and van der Sterren (2002). 

B. MODEL IMPLEMENTATION 

The process for development began with building the desired scenario in a small 

modeling environment covering a 100 by 100-meter area of terrain with a 100 x 100-grid 
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square waypoint graph. Each square cell is sized at two by two meters with the basic 

capability of demonstrating similar behavior as in the A* Explorer implementation. 

Following successful completion of this build, the next build involved expanding the 

model’s waypoint graph to cover a 500 by 500-meter terrain space in order to provide 

more realistic offset distances for the agent’s navigational path in accordance with the 

recommended offset distance. This waypoint graph consisted of a 100 x 100 grid with 

cell sizes of ten by ten meters.17 The final stages of the model build entailed 

implementing random variability within the A* algorithm to ensure variable-sized offset 

from the IED danger area in the paths of the agent during each trial execution of the 

model, as well as a version capable of executing experiments with a massive number of 

trial runs (10,000 trials for each temperature condition). The Apex Path pathfinding 

library served as the mechanism for implementing the waypoint grid and A* algorithm, 

as well as provided a model for the agent (Apex Game Tools, 2016; Apex Game Tools, 

n.d.). The source for modeling the danger area consisted of models provided by the 

Modular Prison Fortress library (Aquarius Max, 2016). 

Inducing variability into the agent’s generated navigational paths provided a 

mechanism for implementing the statistical findings related to human vigilance and 

attention behavior in hot environments in such a way that proved realistic. Due to the vast 

number of possible influences on a human’s behavior, allowing for variability in paths 

such that even under mild temperature conditions an agent could walk paths that moved 

dangerously close to a potential IED danger area becomes necessary to ensure realism. 

Likewise, an agent in a hot temperature environment could also find a navigational path 

in accordance with recommended practices and navigate from the recommended standoff 

distance away from the IED danger area at certain points in time. The inclusion of a 

mechanism for variability was essential for ensuring that the proposed model proof-of-

concept provides instances where agents make both good and bad decisions, but more 

                                                 
17 The object forming the navigational terrain consisted of a 0.5-meter side length cube scaled up by a 
factor of 1000 in the x and z dimensions to achieve a 500 by 500-meter terrain space. The scale in the y 
dimension was one. In the small model environment, this 0.5-meter side length cube was scaled up by a 
factor of 200 in the x and z dimension to achieve a 100- by 100-meter terrain space. 
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often than not make decisions that replicate performance described in Hancock et al.’s 

(2007) meta-analysis. 

1. A* Algorithm Modifications 

Prior to implementing variability within the model based upon Hancock et al.’s 

(2007) thermal stressors meta-analysis, the underlying implementation of the A* 

algorithm required manipulation to promote navigation close to the danger area under hot 

temperature conditions, and far from the danger area under mild temperature conditions. 

The mechanism for manipulating the A* algorithm required adding an additional cost to 

each node within the waypoint graph via the “g” portion of the node’s total “f” cost. 

Doing so within the “g” portion of the cost, as opposed to the “h” portion of the cost, 

allowed for more responsive alteration of the agent’s path. After initial attempts to fine 

tune the cost functionality within the “h” portions of the cost as well, evidence suggested 

that this was unnecessary and at times did not generate the desired decremented path 

finding behavior. Modifications to the “g” portion of the cost adheres to techniques 

described by Stout (2000), and demonstrated by Darken (2016) as well as Matthews and 

van der Sterren (2002). Furthermore, using a heuristic “h” cost based upon the “straight-

line distance” between the current node and the goal node (as we do in our model) allows 

us to preserve A* graph search optimality according to Russell and Norvig (2010), who 

stated that such a straight line heuristic “is a consistent heuristic” (p. 95). 

a) Model Code Structure and Implementation 

The code implementation for the A* algorithm took place within the 

MyMoveCostFactory component of the Game World object. The Game World serves as 

the Apex Path mechanism for providing a waypoint grid, as well as the object basis for 

adding additional components for executing the A* algorithm and visualizing the 

resultant agent paths (Apex Game Tools, 2016). MyMoveCostFactory and the underlying 

MyMoveCost component held the main code for altering the agent’s “g” portion of the 

cost, and serve as the components within Apex Path for tailoring the A* algorithm to 

one’s own desired cost influencers (Apex Game Tools, 2016). The Modeling, Virtual 

Environments, and Simulation (MOVES) support staff provided some assistance in the 
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form of code that included the initial desired concept for agent paths according to the A* 

Explorer implementation within MyMoveCostFactory and MyMoveCost—we built upon 

this for our model implementation (Apex Game Tools, 2016). 

The additional enhancements and modifications to MyMoveCost created by the 

MOVES support staff allowed for adjustments to the agent’s navigational paths to 

include variable lateral offsets from the IED danger area primarily through the 

GetEnvironmentCost function. Essentially, after the randomly generated establishment of 

a circular danger area radius value (discussed in Section 1b) Assigning Values to 

randomNumberDASize), called the randomNumberDASize (corresponding to the IED’s 

circular danger area radius), the GetEnvironmentCost function calculates the “g” cost of 

the currently searched node based upon the node’s distance relationship from the IED 

danger area. In most cases, if the node’s location fell within the circular danger area 

radius the “g” cost would receive a minimum additional cost of 10,000 units, 

discouraging the A* algorithm from choosing a path that would pass through the IED’s 

circular danger area radius. However, if the node’s location fell outside of the IED danger 

area radius, the “g” cost would increase based upon slightly different methods of 

calculation due to the environmental temperature condition. In a hot environment, the “g” 

cost penalty increases from the edge of the circular IED danger area radius outward to the 

edge of the waypoint grid, while for the mild temperature environment the “g” cost 

penalty decreases from the edge of the IED circular danger area radius outward to the 

edge of the waypoint grid. 

Figure 8 depicts the flow of information within the model to achieve the desired 

temperature decremented path finding behavior. The execution of the model begins with 

a user set Boolean variable to define the environment’s status as a hot or mild 

temperature environment. This variable then drives code execution within the 

EnvironmentStatus component, and results in different paths based upon random number 

draws from two different normal distributions. If the agent operates within a hot 

temperature condition environment, the model utilizes a pseudorandom number generator 

to sample from a normal distribution describing performance accuracy in a hot 

temperature environment. However, if the agent operates in a mild temperature condition 
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environment, the model utilizes a pseudorandom number generator to sample from a 

different normal distribution related to performance accuracy in a mild temperature 

environment (Section 2a) Derivation of Hot and Mild Temperature Condition 

Distributions) describes the derivation of these two normal distributions). The random 

number draw sample is then compared to where it falls into on the normal distribution for 

the mild temperature condition to assign a value to the randomNumberDASize variable. 

The assigned value of randomNumberDASize within the MyMoveCost script informs the 

MyMoveCostFactory component the correct offset value to utilize in assisting with the 

calculation of a searched node’s “g” cost (Apex Game Tools, 2016). The 

PathFinderVisualizer component assists in executing the A* algorithm for this model 

implementation and displays the ultimate found path; it also depicts the total “f” cost of 

each searched node via a heat map visualization (Apex Game Tools, 2016).
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 Flow Diagram for Depicting Decremented Pathfinding Behavior 
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b) Assigning Values to randomNumberDASize 

We split the mild temperature condition’s normal distribution into “brackets” by 

splitting the distribution up into half-standard deviation increments between negative 

three standard deviations from the mean to positive three standard deviations from the 

mean. Different values get assigned to the randomNumberDASize variable based upon 

the location of the randomly generated number from the respective environmental 

condition normal distribution as compared to the bracket location on the mild temperature 

condition’s normal distribution that the sample would be found. Figure 9 and Figure 10 

show the two normal distributions utilized for the model implementation. The brackets 

can be seen in Figure 10. The text box below the x-axis displays the possible values 

assigned to the randomNumberDASize variable. No interpolation of 

randomNumberDASize takes place between brackets. 

Smaller danger area values exist at the left end of the distribution, coinciding with 

poorer performance accuracy indicating poor attention and vigilance, and thus less offset 

achieved by the agent from the IED danger area. Larger danger area values on the right 

side of the distribution indicate better performance accuracy due to better attention and 

vigilance in the respective temperature environment, and consequently more offset of the 

agent’s path from the IED danger area. This implementation provides a means for linking 

human statistical performance as seen in Hancock et al.’s (2007) meta-analysis to tactical 

path-finding decisions by the agent. 
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 Hot Temperature Condition Distribution for Performance Accuracy. 
Adapted from Hancock et al. (2007). 

 

 Mild Temperature Condition Distribution for Performance 
Accuracy. Adapted from Hancock et al. (2007). 
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c) Examples of Visual Path Differences 

The circular danger area radius generates the most notable feature of the agent’s 

path—the path’s lateral offset from the IED danger area at the path’s midpoint. The 

influence of the different “g” cost calculation method’s due to the environmental 

temperature condition results in differences to both the A* algorithm’s search space size 

and aesthetic differences in path appearance. The goal for calculating the additional “g” 

cost in different ways for each of the temperature conditions centers on the idea of 

promoting paths more offset from the danger area under mild temperature conditions, and 

less offset from the danger area under hot temperature conditions. This approach proved 

to have a smaller impact on ultimate path generation than originally thought. In 

execution, a preponderance of the determination of the final path appearance rests with 

the determination of the circular IED danger area radius. 

We include a number of examples of the agent paths generated under the two 

temperature conditions. Figure 11 shows the initial model environment set up in Unity. 

The left side of the model environment (denoted by “Scene View”) shows the initial 

model set up from an object standpoint, while the right view (denoted by “Game View”) 

shows the view seen by a user in a gaming environment. The small light blue object 

denotes the agent; while light blue objects appear in both views, there is only one 

object—each viewport is giving a different view of the same object. The colored lines on 

the terrain on each side of the IED danger area location indicate the various 

randomNumberDASize offset “test gates” for assistance with model testing. The 

“Environment Hot” check box toggle in the top left of the game view allows the user to 

“alter” the environmental temperature of the model via the underlying statistical 

implementation of Hancock et al.’s (2007) meta-analysis. 

Figure 12 and Figure 14 show sample path outputs for an agent in both hot and 

mild temperature condition settings. Figure 12 displays an agent’s path in a hot 

temperature environment with an assigned value for randomNumberDASize of 150 

meters. The console view (denoted by “Console View”) displays the distribution sample 

(called distSample) taken via random number generator from the hot temperature 

condition normal distribution; since distSample fell into the -0.5 to -1.0 standard 
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deviation bracket on the mild temperature condition normal distribution, 

randomNumberDASize receives a value of 150 meters. The agent’s path is depicted in 

blue, while the A* search space is the dark blue area outlined in bright green. The bright 

green indicates nodes awaiting processing by the A* algorithm (Apex Game Tools, 

2016). The circular gray area in the middle of the search space indicates the 150-meter 

circular area described by randomNumberDASize; these nodes are not searched by the 

algorithm likely due to their extremely high total “f” cost relative to the dark blue nodes 

that do get searched. 

In Section 1d) Heat Map Visualization of Search Space, we will discuss the 

assignment of colors to the searched nodes, as each color represents different “f” costs for 

each node. Figure 14 displays similar model functionality to that shown in Figure 12, but 

in a mild temperature environment. We include Figure 13 and Figure 15 with the search 

space color in light gray to provide better visibility of the path behavior seen in Figure 12 

and Figure 14. 

 

 Initial Model Set-up in Unity 
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 Model under Hot Environmental Conditions: Agent Selects Path 
with 150 Meters Offset from the IED Danger Area. 
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 Hot Environmental Conditions: 150 Meter Offset Blue Path on Light Gray Search Space 
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 Model Under Mild Environmental Temperature Conditions: Agent Selects Path 
with 150 Meters Offset from the IED Danger Area. 
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 Mild Environmental Conditions: 150 Meter Offset Blue Path on Light Gray Search Space 
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As depicted in Figure 13 and Figure 15, the widest point of both agent paths 

corresponded to the selected randomNumberDASize value resulting from the model’s 

algorithm for implementing randomness based upon the relation of a sample from the 

respective temperature condition’s normal distribution to the mild temperature 

condition’s distribution. In the cases shown in Figure 13 and Figure 15, 

randomNumberDASize received a value of 150, meaning that all nodes within a radius of 

150 meters of the IED danger area received such a high “g” cost that the A* algorithm 

found other nodes to search that proved much cheaper. One can also see how the path 

generated in the hot temperature condition appears visually different from the path 

generated in the mild condition (specifically after the agent’s path has moved beyond the 

circular IED danger area radius). This results from the slightly different calculations of 

the “g” cost of nodes outside of the unsearched dark gray circular space around the IED 

danger area. Additionally, the size of each condition’s search space constitutes another 

noticeable difference between the two conditions, where the mild temperature condition 

exhibited a smaller search space for this IED danger area offset size radius of 150 meters. 

d) Heat Map Visualization of Search Space 

The Apex Path tool provides a mechanism via the PathFinderVisualizer 

component to view the various aspects of each searched node’s cost (Apex Game Tools, 

2016). Figure 16 displays the “f” cost for each node searched for the agent’s path found 

under the same hot environmental conditions and IED danger area offset size as shown in 

Figure 12. The default color coding implementation of the PathFinderVisualizer 

component for search space nodes received alteration by using a heat map color 

assignment function (Darken, 2016) to assign color values from the Hue-Saturation-

Value (HSV) color wheel (skm, 2014) to each searched node in the search space based 

upon its total “f” cost. Figure 16 shows a close up view of the assigned “f” costs for a 

section of searched nodes. The game view displays the total “f” cost for each searched 

node within a small section of the search space covering the edge of the IED danger area 

radius and the search space area through which the agent’s path travels. 
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 Game View of Hot Environment Condition Displaying Total “f” 
 Cost for Each Searched Waypoint Node 

The heat map generally displays dark blue hue values for many of the agent paths 

for a smaller circular IED danger area (240 meters and smaller); indicating low overall 

cost for the search nodes. However, as the circular IED danger area radius grows to 270 

meters or larger, the heat map values begin to display warmer (brighter green and red) 

color values indicating more varied node costs. Figure 17 through Figure 24 (except for 

Figure 18 and Figure 20, which we include to make it easier to see 270 meter offset paths 

than those shown in Figure 17 and Figure 19) show this change in color values. 

An agent’s chosen path has a lateral offset from the danger area similar to the 

value chosen for the circular IED danger area radius. However, the paths generated in 

environments where the randomNumberDASize value received a value of 330 or 360 
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differ in that the underlying search space indicates that multiple nodes inside of the 

chosen IED danger area radius get searched (see Figure 21 through Figure 24). 

The presence of more color variation and change in the hot temperature 

conditions with 270 meter and larger IED danger area radii results from the different 

implementations for calculating the additional “g” cost between the hot and mild 

temperature conditions. While the additional “g” cost increased in size from the danger 

area outward to the Game World’s fringes for the hot temperature condition, in the mild 

temperature condition the additional “g” cost decreased from higher values in vicinity of 

the danger area to lower values at the edge of the Game World. Additionally, the added 

“g” cost increased in smaller and more consistent increments in the hot temperature 

condition, i.e., the cost value increased one unit for every ten additional meters of 

distance between the node and danger area, with interpolation of cost increases in 

between. The mild temperature condition additional “g” cost decreased in less consistent 

steps than the hot temperature condition did—for example, the added “g” cost at nodes 

300, 350, 400, 450, and 500 meters, respectively, from the IED danger area were 100, 90, 

70, 40, and 22.5. This differing calculation likely contributes to the bigger search spaces 

seen in the hot temperature condition paths, as well as the wider range of heat map colors 

(indicating a wider range of “f” costs) seen outside of the circular IED danger area radius 

corresponding to the value chosen for randomNumberDASize. 

As an example, in the search space for the hot temperature condition path shown 

in Figure 21, heat map values appear reddest where the “f” cost is highest around the 

fringes of the circular area of gray unsearched nodes. The green colors indicate nodes 

whose “f” costs are moderately high, i.e., higher than the low “f” cost blue nodes around 

the agent’s start point, but lower than the high cost red and yellow nodes. One can also 

see how the search space for the mild temperature condition path shown in Figure 22 

displays fewer red and yellow nodes, and generally has more green and blue nodes than 

the search space for the hot condition shown in Figure 21. In the search spaces in Figure 

23 and Figure 24, some nodes around the circular area of gray unsearched nodes appear 

to form a black ring. This black ring corresponds to nodes with high enough “f” costs that 

the heat map color function failed to map the node to a value on the HSV color wheel. 
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One can see how the search space in the hot temperature condition shown in Figure 23 

displays a wider black ring of nodes and many more red color values than the search 

space from the mild temperature condition shown Figure 24, indicating much higher and 

varied costs in the hot temperature condition compared to the mild temperature condition. 
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 Heat Map Display for Hot Temperature Condition 270 Meter Radius Path  
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 Hot Temperature Condition: 270 Meter Offset Blue Path on Light Gray Search Space 
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 Heat Map Display for Mild Temperature Condition 270 Meter Radius Path  
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 Mild Temperature Condition: 270 Meter Offset Blue Path on Light Gray Search Space 

 



 

 73

 

 

 Heat Map Display for Hot Temperature Condition 330 Meter Radius Path  
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 Heat Map Display for Mild Temperature Condition 330 Meter Radius Path  
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 Heat Map Display for Hot Temperature Condition 360 Meter Radius Path  
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 Heat Map Display for Mild Temperature Condition 360 Meter Radius Path 
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2. Design of Experiments 

We now provide a discussion of the experimental design for this thesis for the 

purposes of describing how we tested for differences in paths between the hot and mild 

temperature conditions. 

a) Derivation of Hot and Mild Temperature Condition Distributions 

In order to create an empirically based behavior model, we used Hancock et al.’s 

(2007) meta-analysis to provide the foundation for creating normal distributions for each 

temperature condition to sample from and achieve variability in the path output. To create 

the normal distributions (Figure 9 and Figure 10), we used the statistical mean effect size 

of negative 0.29 from the outlier analysis of the perceptual task category conducted in 

greater than 85°F ET as the basis for an equation to calculate the appropriate sample 

means and standard deviations for the respective temperature condition normal 

distribution (Hancock et al., 2007, p. 858). The negative value represents worse 

performance for the “experimental” hot temperature condition relative to the “control” 

mild temperature condition (Hancock et al., 2007, p. 855). The equation utilized to 

calculate the means for the experimental and control conditions was:  

 

 
H My y

g
s


   (1.2) 

 

Hancock et al. (2007) utilized a form of this equation to calculate the effect size 

for specific studies, where g represents a specific study’s effect size, s represents the 

study’s standard deviation, ӯH represents the mean value for the hot temperature 

condition, and ӯM represents the mean value for the mild (i.e., “room-temperature”) 

temperature condition (p. 854). Hancock et al.’s (2007) methods assume s represents a 

pooled standard deviation for studies utilizing a “between-subjects” experimental design, 

and a standard deviation of the control condition for a “within-subjects” experimental 
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design (p. 855).18 Since the number utilized for the effect size of negative 0.29 represents 

a mean weighted effect size that required application of multiple statistical techniques by 

Hancock et al. (2007), specific standard deviations did not appear in the meta-analysis. 

Furthermore, the researchers “adjusted” each standard deviation to a “common standard 

deviation…of the experimental and control groups” before calculating the mean weighted 

effect size, so for the purposes of this thesis, we assume that s represents the mild 

temperature condition’s standard deviation (p. 855). We selected 0.6 for s to allow for a 

randomly generated sample small enough that sampling the normal distribution at greater 

than plus or minus three standard deviations from the mean only rarely produced a 

negative value. 

Due to a lack of information present in the meta-analysis to reverse the process 

used to calculate the mean weighted effect size, we assumed that the mean weighted 

effect size of -0.29 can be substituted for g in Equation 1.2. Finally, by solving Equation 

1.2 for the numerator on the equation’s right side we are left with: 

 

 .174H My y     (1.3) 
 

We then created mean values representing mean performance accuracy for the hot 

and mild temperature conditions that would fulfill this equation, ending up with ӯH = 2.83 

and ӯM = 3.00. To calculate the standard deviation for the hot temperature condition, we 

considered that “performance under thermal stressors proved on average to be 

approximately one third of a standard deviation…worse than performance at a 

comparative thermoneutral temperature” (Hancock et al., 2007, p. 857).19 Therefore, we 

chose 0.8 as the standard deviation for the hot temperature condition. The desire to 

calculate the means and standard deviations as representative of performance accuracy 

stems from Hancock et al.’s (2007) finding that “heat stressors deleteriously influence 

                                                 
18 Hancock et al. (2007) applied other statistical methods to create effects sizes if they did not have access 
to the “means and/or standard deviations” (p. 855). 

19 A limitation of this finding is that “thermal stressors” includes both hot and cold stressors, while our 
model only accounts for hot stressors (Hancock et al., 2007). 
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perception through a reduction in response accuracy and an increase in response time” (p. 

868). The authors also note from the outlier analysis a “high degree of consistency in the 

effect of heat on perceptual performance accuracy” (p. 869–870). 

b) Approach for Creating Decremented Behavior in Hot Environment 

The normal curves for the hot and mild conditions Figure 9 and Figure 10 show 

the splitting of the distributions at every half of a standard deviation and the mappings of 

those increments to a value for the IED danger area offset radius. The decision to account 

for values randomly sampled from each temperature condition’s distribution up to plus or 

minus three standard deviations from the mean stems from the “68-95-99.7 Rule,” where 

plus or minus three standard deviations contain 99.7% of the normal distribution’s values 

(De Veaux, Velleman, & Bock, 2012, p. 130). Any randomly sampled values that fell 

outside of the range were treated as if they had fallen within the range of the nearest two-

and-a-half to three standard deviations from the mean bracket (Oferei, 2014). 

In order to create the desired behavior of decremented performance in a hot 

temperature environment that aligned with the extant human performance research, it 

became necessary to design the model to compare the random number generated samples 

from both temperature conditions to the mild temperature condition serving as the control 

condition. We utilized the MathNetForUnity package to provide the Mersenne Twister 

random number generator, as well as the mechanism for conducting random number 

sampling from normal distributions (Bismur Studios Ltd., 2017a; Bismur Studios Ltd., 

2017b; Matsumoto & Nishimura, 1998). The MathNetForUnity package utilized the Box-

Muller Algorithm (Box & Muller, 1958). We created a model version for executing mass 

trial runs for statistical testing. Statistical results for path length (in meters), the random 

number generator sample from the respective temperature condition, and the value 

chosen for randomNumberDASize were collected via the ExperimentStats Unity Package 

created by the MOVES support staff. 

c) Controlling for Variability 

Several approaches were used to control for variability. To reduce variability 

while measuring the length of time needed to execute trial runs, we only allowed the 
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Unity model and Visual Studio project window to remain open. Further, the trials for 

each temperature condition took place during separate runs of the model. This resulted 

partly from the structure and implementation of the code, and partly for ensuring that 

executions of the model in one temperature condition did not affect executions of the 

model in the other temperature condition, or negatively affect the time to execute runs. 

Another approach utilized to control for variability came from the use of the 

“common random numbers (CRN)” technique described by Law (2015) (p. 588). 

Essentially, we used the same seed for the Mersenne Twister pseudo-random number 

generator to sample from each temperature condition’s normal distribution. According to 

Law (2015), in doing so we hope to “induce…positive correlation” (p. 589) between each 

temperature condition’s outputs, ultimately yielding less variance and a “much smaller 

confidence interval” of the mean of the differences between the two conditions (p. 563). 

Law (2015) describes how using CRN mandates the use of paired-t tests of the outputs 

between the two temperature conditions due to a lack of independence between each 

temperature condition’s corresponding outputs. Further, we conducted the same number 

of trials for each temperature condition—another indication that we needed to use the 

paired-t test to analyze the model’s results (Law, 2015). The CRN technique removes the 

variance from the model arising from having different numbers seeding the Mersenne 

Twister used in each temperature condition; the author states that the technique 

essentially allows one to “compare the alternative” temperature conditions “under similar 

experimental conditions” (p. 589). Additionally, the author relates that this approach does 

not alter the “means and variances” of the normal distributions of each temperature 

condition (p. 589). 

d) WBGT Flag Condition Indicator 

To aid in comprehension of the environmental temperature conditions in a manner 

familiar to Marines, we placed additional features to describe the environment in terms of 

environmental flag conditions above the agent. The Marine Corps utilizes a system of 

environmental flag conditions to describe the current WBGT of the environment; this 

system provides “guidance” for outdoor training in hot environments depending on the 
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environmental flag condition (Commandant of the Marine Corps, 2003, p. 5). Since 85°F 

ET corresponds to 87.4° WBGT (Hancock et al., 2007), the hot temperature condition 

displays a red flag condition sphere above the agent to depict a hot environment, while a 

white flag condition sphere displays above the agent in a mild temperature environment. 

Although the 85°F ET/87.4°F WBGT threshold should technically fall into the yellow 

flag condition WBGT range (85°F-87.9°F WBGT), we assume that it falls into the next 

highest flag condition range of red (88°F-89.9°F WBGT) (Commandant of the Marine 

Corps, 2003). The white flag condition technically encompasses temperatures up to (but 

not including) 80°F WBGT, and although this thesis equates the mild temperature 

condition to room temperature per Hancock et al. (2007), we use white here to describe 

the mild temperature condition (Marines.mil, n.d.). Figure 25 and Figure 26 depict the 

visualization features used to describe the environmental temperature condition of the 

agent’s operational environment. 

 

 White Sphere above Agent Indicating a Mild Temperature Condition 
Operational Environment 
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 Red Sphere above Agent Indicating a Hot Temperature Condition 
Operating Environment 
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IV. RESULTS 

A. ASSUMPTIONS AND CONDITIONS 

We will now discuss the hypotheses utilized to help answer one of our initial 

research questions as to the extent to which we could quantify human performance in an 

AI model within a military training simulation. We present our findings from the testing 

of each hypothesis for runs of the model under each temperature condition. The findings 

presented will include results for testing of the hypothesis with an experiment with 205 

trials for each temperature condition, and an experiment with 10000 trials for each 

temperature condition. 

JMP Pro 12.0 was used to conduct our statistical analysis (SAS Institute Inc., 

2015). Due to the fact that we utilized CRN, a paired-t test was used for hypothesis 

testing unless otherwise noted (Law, 2015). Results for paired-t tests are reported as 

confidence intervals as suggested by Law (2015). For all tests, we utilize an alpha level 

(α) of 0.05. We ensured that we met assumptions and conditions for having paired data, 

independence between the mean values found for each temperature condition, 

randomization, and normality of the “differences” (De Veaux et al., 2012, p. 653). We 

must also note that although we compare the outcome of the hot temperature condition 

RNG sample to the mild temperature condition normal distribution to derive the IED 

danger area offset size, we preserve independence because we compare the RNG sample 

output against the ideal specified mild temperature condition normal distribution and not 

against the mild temperature condition normal distribution output from the RNG. 

B. HYPOTHESIS RESULTS 

We now present the findings for our testing of each of our hypotheses related to 

our model implementation. Hypothesis 1A0 and 1B0 deal primarily with the RNG-

generated sample distributions for each temperature condition in both the 205 and 10000 

trial experiments. Hypothesis 20 addresses testing of the mean difference in IED danger 

area offset radii between the agent paths for each temperature condition, while 
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Hypothesis 30 tests the mean difference in path lengths between each temperature 

condition. 

The run time for the 205 trial experiment for both the hot and mild temperature 

conditions took thirty-seven seconds. The run time for the 10000 trial experiment in the 

hot condition took nineteen minutes and seven seconds, while the run time for the mild 

temperature condition took seventeen minutes and thirty-five seconds. 

1. Hypothesis 1A0: Testing of Mean Difference for Temperature 
Condition Normal Distribution Random Number Generated Samples 

Our first hypothesis test deals with the mean difference between the random 

number generator (RNG)-generated temperature conditions normal distribution samples 

to determine if the two temperature conditions exhibited statistically significant 

differences after deriving their means and standard deviations from Hancock et al.’s 

(2007) meta-analysis. 

a) Results for n = 205 Trials for Each Temperature Condition 

To test the null hypothesis that the mean difference between the RNG-generated 

temperature conditions normal distribution samples equaled zero, we conducted a paired-

t test where: ӯM = 3.00, mild temperature condition standard deviation (sM) = 0.66 and ӯH 

= 2.84, hot temperature condition standard deviation (sH) = 0.88. Results indicate that we 

can be ninety-five percent confident that the true mean difference between the RNG-

generated temperature condition normal distribution samples is between 0.13 and 0.19. 

Therefore, we reject the null hypothesis. Figure 27 displays the histogram of the 

differences between the temperature condition normal distribution RNG-generated 

samples (difference equals mild temperature condition sample minus hot temperature 

condition sample; counts of data within a given bin are displayed above the bar). 
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 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

RNG-Generated Samples (n = 205) 

b) Results for n = 10000 Trials for Each Temperature Condition 

Our results for a paired-t test for the 10000 trials experiment with ӯM = 2.98, mild 

temperature condition standard deviation (sM) = 0.60 and ӯH = 2.81, hot temperature 

condition standard deviation (sH) = 0.80 tested the same hypothesis. These results 

indicate that we can be ninety-five percent confident that the true mean difference 

between the RNG-generated temperature condition’s normal distributions is between 

0.170 and 0.178. Therefore, we reject the null hypothesis that the mean difference 

between the mild and hot temperature condition distribution samples equaled zero. Figure 

28 displays the histogram of the differences (difference equals mild temperature 

condition sample minus hot temperature condition sample). 
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 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

RNG-Generated Samples (n = 10000) 

2. Hypothesis 1B0: Testing of Temperature Condition Distribution 
Sampling 

It was critical to determine the accuracy with which the RNG sampled from the 

normal distribution of each temperature condition, since the accuracy of this sampling 

would likely have an effect on the chosen value for the IED danger area radius (i.e., 

randomNumberDASize). Utilizing a one sample t-test, we conducted testing of our first 

null hypothesis: that there is no difference between the mean of the respective 

temperature condition’s RNG-generated sample normal distribution and the specified 

mean for the temperature condition’s normal distribution. Essentially, we tested the 

accuracy of the RNG normal distribution sampling method (Box-Muller algorithm) 

offered by the MathNetForUnity package. Additionally, we ensured the assumptions and 

conditions for a one-sample t-test of independence, normality, and randomization were 

met as outlined by DeVeaux, Velleman, & Bock (2012). 

a) Results for n = 205 Trials for Each Temperature Condition 

The histograms and box plots for the RNG-generated sample output for the hot 

temperature condition (Figure 29) and mild temperature condition (Figure 30) appear 

generally normal. 
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 Hot Temperature Condition RNG Sample Histogram, Box Plot & 
Summary Statistics (n = 205) 

 

 Mild Temperature Condition RNG Sample Histogram, Box Plot, and 
Summary Statistics (n = 205) 

A one-sample t-test for the hot temperature condition (ӯH = 2.84, sH = 0.88) 

indicates that there is no difference between the RNG-generated hot temperature 

condition normal distribution sample and the specified hot temperature condition normal 

distribution, t(204) = 0.20, p = 0.83. Therefore, we fail to reject the null hypothesis, 

meaning we have an accurate enough RNG-generated hot temperature condition normal 

distribution sample. Similarly, a one-sample t-test for the mild temperature condition (ӯM 

= 3.00, sM = 0.66) indicates that there is no difference between the RNG-generated mild 

temperature condition normal distribution sample and the specified mild temperature 

condition normal distribution, t(204) = 0.20, p = 0.83. Again, we fail to reject the null 

hypothesis. 
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We also conducted goodness of fit testing20 of the RNG-generated distributions in 

accordance with Law (2015) to ensure they comprised a normal distribution. We utilized 

the Shapiro-Wilk Test (Shapiro & Wilk, 1965) to test both the hot and mild temperature 

condition RNG-generated distribution samples. The null hypothesis for this test states 

that the outcome distribution’s samples come from the normal distribution (SAS Institute 

Inc., 2015). For the hot temperature condition, we fail to reject the null hypothesis (W = 

0.99, p = .26). We also fail to reject the null hypothesis for the mild temperature 

condition’s distribution (W = 0.99, p = 0.26). Therefore, we may proceed assuming that 

both RNG distributions are normal. 

b) Results for n = 10000 Trials for Each Temperature Condition 

The histograms and box plots for each temperature condition’s RNG-generated 

distribution outcomes appear in Figure 31 and Figure 32. 

 

 Hot Temperature Condition RNG Sample Histogram, Box Plot and 
Summary Statistics (n = 10000) 

                                                 
20 The goodness of fit tests we use here are empirical distribution function tests, not Chi-square tests (JMP 
12 Online Documentation, n.d.).  
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 Mild Temperature Condition RNG Sample Histogram, Box Plot, and 
Summary Statistics (n = 10000) 

A one-sample t-test for the hot temperature condition (ӯH = 2.81, sH = 0.80) 

indicates that there is a difference between the RNG-generated hot temperature condition 

normal distribution sample and the specified hot temperature condition normal 

distribution, t(9999) = -2.19, p = 0.02. Therefore, we reject the null hypothesis. Similarly, 

a one-sample t-test for the mild temperature condition (ӯM = 2.98, sM = 0.60) indicates 

that there is a difference between the RNG-generated mild temperature condition normal 

distribution sample and the specified mild temperature condition normal distribution, 

t(9999) = -2.19, p = 0.02. Again, the null hypothesis is rejected. 

We utilized the Kolmogorov-Smirnov-Lilliefors (KSL) test (Lilliefors, 1967) to 

determine if the hot and mild temperature condition RNG-generated distributions again 

fit a normal distribution (Law, 2015). This test utilizes the same null hypothesis as the 

Shapiro-Wilk test, but serves as JMP 12.0’s goodness of fit testing mechanism for sample 

sizes over 2000 (JMP 12 Online Documentation, n.d.). For the hot temperature condition, 

we fail to reject the null hypothesis (D = 0.004, p > 0.15). We also fail to reject the null 

hypothesis for the mild temperature condition’s distribution (D = 0.004, p > 0.15). 

Therefore, we may proceed assuming that both RNG distributions are normal. 
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3. Hypothesis 20: Testing of Mean of Differences for IED Danger Area 
Radius 

We now provide the results from testing the mean difference between each 

temperature condition sample’s IED Danger Area Radius sizes (essentially the value 

assigned to randomNumberDASize for each temperature condition). 

a) Results for n = 205 Trials for Each Temperature Condition 

To test the null hypothesis that the mean difference between each temperature 

condition sample’s IED Danger Area Radius sizes (i.e., randomNumberDASize) equaled 

zero, we conducted a paired-t test where: ӯM for danger area radius = 195.21, sM for 

danger area radius = 66.46 and ӯH for danger area radius = 180.14, sH for danger area 

radius = 84.14. Results indicate that we can be ninety-five percent confidence that the 

true mean difference between each temperature condition sample’s danger area radius 

sizes is between 12.02 and 18.12. Therefore, we reject the null hypothesis. Figure 33 

displays the histogram of the differences between each temperature condition’s IED 

Danger Area Radius sizes (difference equals mild temperature condition minus hot 

temperature condition). 

 

 

 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

IED Danger Area Radius Size (n = 205) 
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b) Results for n = 10000 Trials for each temperature condition 

We tested the same hypothesis in an experiment with 10000 trials for each 

temperature condition. We conducted a paired-t test where: ӯM for danger area radius = 

193.64, sM for danger area radius = 60.89 and ӯH for danger area radius = 176.97, sH for 

danger area radius = 77.82. We can be ninety-five percent confident that the true mean 

difference between each temperature condition sample’s danger area radius sizes is 

between 16.23 and 17.09. Therefore, we reject the null hypothesis. Figure 34 displays the 

histogram of the differences between each temperature condition sample’s IED Danger 

Area Radius sizes (difference equals mild temperature condition minus hot temperature 

condition). 

 

 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

IED Danger Area Radius Size (n = 10000) 

4. Hypothesis 30: Testing of Mean of Differences for Path Length 

Our final hypothesis tests the mean difference between each temperature 

condition sample’s path lengths (in meters). 

a) Results for n = 205 Trials for each temperature condition 

To test the null hypothesis that the mean difference between each temperature 

condition sample’s path lengths equaled zero, we conducted a paired-t test where: ӯM for 

path length = 806.73, sM for path length = 107.33 and ӯH for path length = 798.74, sH for 

path length = 132.00. These results suggest that we can be ninety-five percent confident 
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that the true mean difference between each temperature condition sample’s path lengths 

is between 3.35 and 12.62 meters. Therefore, we reject the null hypothesis. Figure 35 

displays the histogram of the differences between each temperature condition sample’s 

path lengths (difference equals mild temperature condition minus hot temperature 

condition). 

 

 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

Path Length (in meters; n = 205) 

b) Results for n = 10000 Trials for Each Temperature Condition 

Our results for the 10000 trial for each temperature condition experiment utilizing 

a paired-t test where: ӯM for path length = 800.10, sM for path length = 97.89 and ӯH for 

path length = 789.92, sH for path length = 121.30. We can be ninety-five percent 

confident that the true mean difference between each temperature condition sample’s 

path lengths is between 9.54 and 10.82 meters. Therefore, we reject the null hypothesis. 

Figure 36 displays the histogram of the differences between each temperature condition 

sample’s path lengths (difference equals mild temperature condition minus hot 

temperature condition). 
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 Histogram, Boxplot, and Summary Statistics of the Differences 
between Mild Temperature Condition and Hot Temperature Condition 

Path Length (in meters; n = 10000) 
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V. DISCUSSION 

A. ANALYSIS OF RESULTS 

The results presented confirm that we can create agent performance exhibiting 

more decremented path finding around an IED danger area in hot temperature conditions 

relative to mild temperature conditions. Our findings show that in mild temperature 

conditions the agent travels paths demonstrating greater offset around an IED danger area 

than path offsets in hot temperature conditions. Furthermore, the agent paths travel a 

longer distance in mild temperature conditions than in hot temperature conditions. 

Another key contribution from our experiment demonstrates that we can demonstrate 

greater variability of performance in the hot temperature condition compared to the mild 

temperature condition in accordance with Hancock et al.’s (2007) observations. 

In general, our mechanism for demonstrating greater performance decrement in 

hot temperature environments displays the desired behavior of smaller offsets from the 

IED danger area. This smaller offset provides a demonstration of decremented attention 

and vigilance to the IED danger area in a hot temperature environment. Following 

naturally from this small offset from the IED danger area, the path lengths in the hot 

temperature environment have a shorter length than the paths in the mild temperature 

environment. Hypothesis 20 for testing the mean difference in IED danger area radius size 

between the two temperature conditions proves most important, since the fundamental 

decision of our model’s algorithm hinges on the assignment of the value for this radius 

size. Despite the different methods for calculating the “g” cost for both the hot and mild 

temperature conditions, the path length appears to be largely determined by the IED 

danger area radius size. Simply put, paths may look slightly different from the hot 

condition to the mild condition, but they will have the same path lengths if they have the 

same IED danger area radius size. 

The larger value exhibited in the standard deviations for IED danger area size and 

path length for the hot temperature condition versus those for the mild temperature 

condition serves as an indicator that our model simulates Hancock et al.’s (2007) 
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discussion of the importance of variability measures in assessing the effects of heat stress. 

Furthermore, simulating this property allows us to put forth our model as one that 

promotes the importance assigned by the authors of 85ºF ET/87.4°F WBGT as a “useful 

theoretical and practical threshold for the parsing of heat stressor effects” (p. 860). 

We checked our output results for the positive correlation and reduced variance 

for the mean difference values as described by Law (2015). Our findings indicate that 

positive correlation did occur when conducting paired-t tests for Hypothesis 1A0, 20, and 

30 (of note, the paired-t test for Hypothesis 1A0 indicated a correlation of 1.00 for both 

the 205 and 10000 trial experiments between the RNG-generated distribution samples for 

the mild and hot temperature conditions). Ultimately, we find the best evidence of the 

tighter confidence intervals and reduced variance of the mean differences from the CRN 

technique as described by Law (2015) when we look at the much smaller confidence 

intervals produced by the 10000 trial experiment compared to the confidence intervals 

produced by the 205 trial experiment. 

We also note that the confidence intervals found in our test results for both the 

205 and 10000 trial experiments showcase the desired behavior of performance 

decrement in a hot temperature environment without producing absurdly large values for 

the mean differences between the two temperature conditions. As discussed previously, 

we desired a model that would allow for behavior that proves realistic and believable in 

that ground combatants can make both good and bad decisions in mild and hot 

temperature conditions. Our model allows for this kind of behavior to occur, while still 

exhibiting our fundamental goal of exhibiting more decremented vigilance and attention 

performance in hot temperature conditions versus mild temperature conditions. This also 

speaks to the fact that outlier samples from the RNG-generated temperature condition 

distributions prove desirable and expected in that they promote this kind of realistic 

positive and negative behavior regardless of temperature condition. 

Analyzing the results of Hypothesis 1A0 demonstrate statistically significant 

differences between the hot and mild temperature condition RNG-generated distribution 

samples for both the 205 trial and 10000 trial experiments. This aids in confirming that 

our technique described in Chapter III for assignment of values for the mean and standard 
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deviation of the hot and mild temperature conditions in accordance with Hancock et al. 

(2007) proved adequate for simulating the results of their meta-analysis. 

Our results for testing Hypothesis 1B0 for the 205 trial experiment displays RNG-

generated distribution samples in both temperature conditions that have a mean that 

proves statistically similar to the originally intended mean specified to the RNG. 

However, Hypothesis 1B0 demonstrates some interesting findings with respect to the 

10000 trial experiment. Here we find for both temperature conditions that the RNG-

generated distribution sample proves statistically different from the desired mean 

specified to the RNG. We can also see that for both the hot and mild temperature 

conditions the mean of the RNG-generated sample is less than the desired means by a 

small amount. Interestingly, the standard deviations for both temperature conditions 

appear quite exact to the standard deviations specified to the RNG. It remains unclear 

why the RNG produced distribution samples with statistically different means from the 

specified mean for both temperature conditions, and why both means differ from the 

specified mean by a similar amount. 

The Box-Muller algorithm used for generating our RNG normal distribution 

samples may be the culprit of the inaccuracy problem. Multiple sources describe some 

problems with the Box-Muller algorithm, and recommend against its use—especially 

with certain types of random number generators known as linear congruential generators 

(Law, 2015; Neave, 1973; Potuznik & Hinow, 1997). Law (2015) specifically warns that 

the random numbers coming from the Box-Muller algorithm used with this type of 

generator could result in a spiral pattern when plotted, “rather than being truly 

independently normally distributed” (p. 457). Potuznik & Hinow (1997) give examples of 

what these plots could look like (see Figure 37 for an example of a Box-Muller output 

from a linear congruential generator). The plots consist of points representing consecutive 

pairs of normal distribution sampled numbers, i.e., the first point represents (X1, X2), the 

next point represents (X3, X4), etc., where each X is a number sampled from the normal 

distribution by the Box-Muller algorithm (Law, 2015; Potuznik & Hinow, 1997). 
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 Box-Muller Algorithm Output for Linear Congruential Generator. 
Source: Potuznik and Hinow (1997). 

Afflerbach & Wenzel (1988) describe certain circumstances where using the Box-

Muller algorithm may not prove detrimental to use, and Law (2015) cautiously admits 

that other types of random number generators could still allow for using the Box-Muller 

algorithm. Figure 38 displays an example where an issue in the Box-Muller output did 

not appear to arise as a result of using an algorithm by Wichmann & Hill (1987), 

described by Potuznik & Hinow (1997) as a “linear combination of three linear 

congruency methods [linear congruential generators]” (p. 3). 

 

 Box-Muller Algorithm Output for Wichmann & Hill Algorithm. 
Source: Potuznik and Hinow (1997). 

Law (2015) does not mention whether the Mersenne Twister random number 

generator, a type of feedback shift register generator, could suffice to prevent the spiral 



 

 99

pattern issue. However, due to the results of our goodness of fit tests indicating that our 

RNG-generated distribution samples for both conditions came from the Normal 

distribution, and plots of our RNG-generated number pairs for the hot and mild 

temperature conditions (see Figure 39 through Figure 42) showing no spiral patterns, 

these reservations may prove of little importance to our model. 

 

 Mild Temperature Condition Plot of Normal Distribution Sample 
Pairs (n = 205; 102 pairs). 

 

 Hot Temperature Condition Plot of Normal Distribution Sample 
Pairs (n = 205; 102 pairs). 
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 Mild Temperature Condition Plot of Normal Distribution Sample 
Pairs (n = 10000; 5000 pairs). 

 

 Hot Temperature Condition Plot of Normal Distribution Sample 
Pairs (n = 10000; 5000 pairs). 

Ultimately, Law (2015) does argue for utilizing an “algorithm that results in 

random variates with exactly the desired distribution” (p. 427). However, Law (2015) 

also puts forth that in picking a type of probability distribution that “provides the best fit” 

of the data, we are also “trying to…determine a distribution that is accurate enough for 

the intended purposes of the model” (p. 335). Law (2015) focuses on simulation models 

outside of the realm of training simulations. Since our model is designed to improve the 

fidelity of decremented behavior in hot temperatures for trainees—which we have 

demonstrated a mechanism for—we propose that the accuracy issues of the sample 

distributions identified in the 10000 trial experiment, and concerns over use of the Box-

Muller algorithm appear to be inconsequential. 
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B. LIMITATIONS 

A primary limitation of the model stems from the source of the model’s statistical 

data from the meta-analysis done by Hancock et al. (2007). Ideally, the data used for our 

model implementation would come from studies of military personnel executing the 

types of military tasks modeled in our proof-of-concept model implementation, but the 

meta-analysis draws from studies across numerous domains. Given limited resources for 

a human subjects experiment, the meta-analysis offered the best breakdown of the data 

according to perceptual types of tasks in a hot, humid environment. However, Hancock et 

al. (2007) does call attention to the general limitation of the meta-analysis in that it does 

not account for all of the “moderator variables” likely to be present in the studies utilized 

(p. 856). Lowe et al. (2007) provides a number of possible data sources in the literature 

from studies of military personnel, but we believe that isolating data measurements 

focused on vigilance and attention types of tasks would prove too difficult given the 

inability to control and account for a number of factors present in these kinds of studies. 

Thus, the Hancock et al. (2007) meta-analysis proved sufficient for our model. 

Similarly, we make numerous assumptions within our model to quantify vigilance 

and attention-type task performance in hot or mild temperature environments into a path 

that hinges largely upon the value selected for randomNumberDASize. Our ability to do 

this may indirectly fulfill the observations by Logan and Alechina (1998) and Ritter et al. 

(2003) about the potential impossibility of boiling a real problem, or human behavior, 

down to one parameter. A human subjects experiment would allow us to determine if 

such assumptions in our model actually proved detrimental to realism. 

Hancock et al.’s (2007) meta-analysis required that study temperatures could be 

utilized to calculate WBGTs, and we presented a mechanism for visually depicting the 

WBGT in the environment to other agents via indicators of the environmental WBGT 

flag conditions. However, the Marine Corps order describing the flag condition 

guidelines states that wearing body armor adds 10°F to the WBGT value (Commandant 

of the Marine Corps, 2003). Our interpretation of Hancock et al.’s (2007) meta-analysis 

does not include this additional factor, when such a temperature addition would prove 

highly relevant given the use of body armor by today’s Soldiers and Marines. 
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Hancock et al. (2007) conducted their task breakdowns according to the ET scale. 

Even though the authors required studies to contain enough information for WBGT 

calculation to become a part of the meta-analysis, Hancock and Vasmatzidis (2003) 

identify some issues of incompleteness of information in the ET conversion to WBGT. 

Essentially, ET constitutes a “subjective scale” lacking what the WBGT scale includes in 

a mechanism for “directly specifying the intensity of the radiant heat stress element” 

(Hancock & Vasmatzidis, 2003, p. 369). Further, the same WGBT temperature can be 

achieved with “different dry-bulb/relative humidity combinations” (p. 369). Our model 

does not account for these finer details and issues with respect to temperature. 

Another limitation of the model focuses on the paths found by the agent. In our 

current implementation, the model’s path allows travels around only one side of the IED 

danger area location. A possible solution for this issue would entail an additional decision 

point within the model to increase the cost of nodes on one side of the IED danger area 

every few path calculations. If done properly, this could encourage agent paths that travel 

to the opposite side of the IED danger area at random intervals. 

Similarly, the agent’s paths demonstrated more jaggedness at times than one 

would realistically expect a human path to travel. We did not implement any string 

pulling techniques to eliminate jaggedness, partly because Apex Path’s built-in 

mechanism for doing so eliminated the desired offset path behavior around the IED 

danger area. Additional coding implementation could eliminate the jaggedness in paths, 

but we remained chiefly concerned with demonstrating overall decremented path finding 

behavior due to environmental heat. 

C. FUTURE WORK 

We recommend several areas for future work that would greatly improve our 

model proof-of-concept. A human subjects experiment to provide a basis for validating 

our model comprises the most important area of future work largely due to the number of 

assumptions and missing variables in our model. Another key area of future work would 

entail creating and implementing our model proof-of-concept in a constructive simulation 



 

 103

such as COMBATXXI, aligning with recommendations by Blais (2016) to improve 

human behavior models within constructive simulation. 

Additional areas of future work that would make the model more useful would 

entail the implementation of greater variability in IED danger area locations, as well as 

the incorporation of multiple danger areas for the agent to navigate around. Our model 

maintains the same location for the IED danger area, as well as the same start and 

destination points for the agent. Future work could vary these locations at the outset of 

each trial to test the flexibility of the environmentally impacted A* algorithm in these 

varied situations. 

Computer vision techniques and algorithms for simulation target acquisition could 

provide a domain for future work by using our translation of Hancock et al.’s (2007) 

findings into a means to influence the effectiveness of techniques described in Darken 

and Jones (2007). We could also see applying techniques used in this thesis to influence 

the effectiveness of visual search and threat location models described in Darken & 

Anderegg (2008) and Darken, McCue, and Guerrero (2010). Alt & Darken (2008) offer a 

fairly robust synthesis of models for modeling a “soldier’s visual attention (search)…and 

target acquisition” (p. 1). The authors describe their model as including a mechanism for 

Endsley’s “level 1” environmental perception aspect of situational awareness pertaining 

to their implementation of agent awareness of enemy threat location and an 

understanding of the simulation’s terrain map (as cited in Alt & Darken, 2008, p. 8). 

Future work should also explore incorporating various aspects of this thesis into the 

portions of Alt & Darken’s (2008) model, as well as the portion of their model dealing 

with selecting an action for the entity. 

Incorporating multiple agents navigating as a team under environmental impacts 

on vigilance and attention is another logical extension of the work accomplished by this 

thesis in order to provide a solution for more realistic training to Marines and soldiers 

operating as a part of larger units. Such future work could build upon the work of Darken, 

McCue, & Guerrero (2010) who implement team and squad path finding with an A* 

algorithm. 
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D. CONCLUSION 

Ultimately, we have provided a model for virtual simulation entities based upon 

the environmental impacts of heat and humidity on human information processing. This 

model makes use of the A* path finding algorithm to demonstrate how heat and humidity 

can negatively impact the performance of an agent’s vigilance and attention paid to their 

surrounding environment, resulting in decremented path finding performance of the agent 

as they attempt to navigate around an IED danger area location. We believe that 

including implementations similar to the one proposed in this thesis within military 

training simulations can greatly improve the accuracy of simulation agent behavior. More 

importantly, we believe that such enhanced accuracy could improve the training of 

military personnel utilizing the simulation so that they gain a better understanding of the 

potential issues that they may encounter on the battlefield while operating as a member of 

a unit. 
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SUPPLEMENTAL 

This supplemental describes the functionality and model execution within the 

Improved Performance Research Integration Tool (IMPRINT). This document has a 

restricted distribution. Those interested in accessing this material should contact the NPS 

Dudley Knox Library. 
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